SHI Peijian,LIU Mengdi.Taylor’s power law of the leaf bilateral symmetry measure of Liriodendron trees[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(03):145-151.[doi:10.3969/j.issn.1000-2006.201808022]





Taylor’s power law of the leaf bilateral symmetry measure of Liriodendron trees
南京林业大学,南方现代林业协同创新中心,南京林业大学竹类研究所,江苏 南京 210037
SHI Peijian LIU Mengdi
Co-Innovation Center for the Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
自举分位点法 叶形 减少主轴法 尺度比例关系 泰勒幂指数 鹅掌楸属
bootstrap percentile method leaf shape reduced major axis scaling relationship exponent of Taylor’s power law Liriodendron
S792.21; Q944.5
【目的】泰勒幂法则是一种重要的生物学统计规律,反映了特定生物学测量值的均值和方差,呈现出幂函数的关系,鹅掌楸叶形复杂,但明显呈两侧对称的特征,本研究旨在验证鹅掌楸叶片两侧对称性测量是否符合泰勒幂法则。【方法】选取了2种鹅掌楸及其杂交种(Liriodendron chinense、L. tulipifera和L. chinense ×L. tulipifera)的叶片(以下表述为3种鹅掌楸叶片),每种200片以上,将每片叶子沿垂直于中轴方向划分出1 000对等距的左右部分,计算左右部分差值之绝对值的均值和方差,使用对数转置的均值和方差数据进行线性拟合,检验3条直线斜率(即泰勒幂指数)的估计值是否具有显著性差异,同时将3种鹅掌楸的数据进行汇总,计算其直线的斜率。【结果】3种鹅掌楸叶片对称性测量均符合泰勒幂法则,但3个斜率的估计值没有显著性差异,根据汇总数据计算得到的泰勒幂指数的估计值为1.777。【结论】研究证实了基于叶面积测量的两侧对称性差异能够反映出泰勒幂法则,良好的尺度比例关系可以提高幂函数的拟合优度。尽管不同类群植物叶形差异较大,但两侧对称性测量的均值和方差的对数转置数据都分布在一条理论回归直线上。考虑到叶形的两侧对称性变异程度能够反映植物地上部分建筑学结构对光获取和利用的影响,研究结果对于分析植物地上部分的拓扑结构对植物光合作用的影响具有一定的参考价值。
【Objective】Taylor’s power law(TPL)is an important biological statistical law that describes the power-law relationship between the mean and variance of a particular biological measure. The leaves of tulip trees exhibit a certain complexity but are bilaterally symmetric. The aim of this study was to examine whether TPL could apply to leaf bilateral symmetry measures.【Method】The leaves of two extant species of tulip trees and their hybrid(Liriodendron chinense, L. tulipifera, and L. chinense ×L. tulipifera)were picked from healthy plants. We will refer to the two species of tulip trees and their hybrid as three species of tulip trees for simplicity. For each species, ≥ 200 leaves were used. For a leaf, 1 000 equidistant strips that are perpendicular to the median axis(i.e., the straight line passing through the apex and base of the leaf)were generated from the apex to base of the leaf, assuming that leaf surface is on a plane. Then, 1 000 areal differences between the intersection(of the left side of the leaf and strips)and that(of the right side of the leaf and strips)were obtained. We calculated the mean and variance of the absolute values of the above 1 000 areal differences, resulting in at least 200 pairs of the data of variance vs. mean(corresponding to 200 leaves)for each species. We used reduced major axis to carry out a linear fit to the log-transformed data of variance vs. mean for each species and also for the pooled data to estimate the slopes of the straight lines(i.e., the exponents of TPL). And then we used the bootstrap percentile method to test whether there was a significant difference in the estimated exponents of TPL among different species.【Result】We found that bilateral symmetry measures of the three species of tulip trees all followed TPL, and there were no significant differences in the estimated exponents of TPL among the three species. The estimated exponent of TPL for the pooled data was equal to 1.777. 【Conclusion】This study shows that leaf area, which has a scaling relationship with leaf weight, can be used for depicting TPL. The goodness of fit for TPL is improved if the scaling relationship of leaf weight vs. area is strong. In addition, there was a large variation in leaf shape across different plant groups. The log-transformed data of variance vs. mean that measured the extent of leaf bilateral symmetry could be well described by a linear equation. Variation in leaf bilateral symmetry is associated with the influence of above-ground plant architecture on light interception and utilization; thus, results of this study can improve our understanding of the effect of above-ground plant topology on the photosynthetic potentials of leaves.


[1] NICOTRA A B, LEIGH A, BOYCE C K, et al. The evolution and functional significance of leaf shape in the angiosperms [J]. Functional Plant Biology, 2011, 38(7): 535-552. DOI: 10.1071/fp11057.
[2] RUNIONS A, FUHRER M, LANE B, et al. Modeling and visualization of leaf venation patterns [J]. ACM Transactions on Graphics, 2005, 24(3): 702-711.DOI:10.1145/1073204.1073251.
[3] RUNIONS A, TSIANTIS M, PRUSINKIEWICZ P. A common developmental program can produce diverse leaf shapes [J]. New Phytologist, 2017, 216(2): 401-418. DOI: 10.1111/nph.14449.
[4] BRODRIBB T J, FEILD T S, JORDAN G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics [J]. Plant Physiology, 2007, 144(4): 1890-1898.DOI:10.1104/pp.107.101352.
[5] SMITH W K, VOGELMANN T C, DELUCIA E H, et al. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide [J]. BioScience, 1997, 47: 785-793.
[6] MILLA R, REICH P B.The scaling of leaf area and mass: the cost of light interception increases with leaf size [J]. Proceedings of the Royal Society of London B-Biological Sciences, 2007, 274(1622): 2109-2115. DOI: 10.1098/rspb.2007.0417.
[7] JURIK T W.Temporal and spatial patterns of specific leaf weight in successional northern hardwood trees species [J]. American Journal of Botany, 1986, 73: 1083-1092.DOI:10.1002/j.1537-2197.1986.th08555x.
[8] NIINEMETS ü, KULL K.Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability [J]. Forest Ecology and Management, 1994, 70: 1-10.DOI:10.1016/0378-1127(94)90070-1.
[9] THOMPSON D W.On growth and form [M]. London, UK: Cambridge University Press, 1917.
[10] LIN S R, SHAO L T, HUI C, et al. Why does not the leaf weigh T-area allometry of bamboos follow the 3/2-power law? [J]. Frontiers in Plant Science, 2018, 9: 583. DOI: 10.3389/fpls.2018.00583
[11] COHEN J E, XU M.Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling [J]. Proceedings of the National Academy of Sciences, United States of America, 2015, 112(25): 7749-7754. DOI: 10.1073/pnas.1503824112.
[12] TAYLOR L R.Aggregation, variance and the mean [J]. Nature, 1961, 189(4766): 732-735.DOI:10.1038/189732a0.
[13] KILPATRICK A M, IVES A R. Species interactions can explain Taylor’s power law for ecological time series [J]. Nature, 2003, 422(692): 65-68. DOI: 10.1038/nature01471.
[14] SHI P J, RATKOWSKY D A, WANG N T,et al. Comparison of five methods for parameter estimation under Taylor’s power law [J]. Ecological Complexity, 2017, 32: 121-130. DOI: 10.1016/j.ecocom.2017.10.006.
[15] CHENG L, HUI C, REDDY G V P,et al. Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis McClure [J]. Ecology and Evolution, 2017, 7(22): 9651-9660. DOI: 10.1002/ece3.3483.
[16] KLINGENBERG C P, BARLUENGA M, MEYER A.Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry [J]. Evolution, 2002, 56(10): 1909-1920. DOI: 10.1554/0014-3820(2002)056[1909:SAOSSQ]2.0.CO; 2.
[17] SCHMITT J, WULFF R D.Light spectral quality, phytochrome and plant competition [J]. Trends in Ecology and Evolution, 1993, 8(2): 47-51.DOI:10.1016/0169-5347(93)90157-k.
[18] SUMIDA A, TERAZAWA I, TOGASHI A,et al. Spatial arrangement of branches in relation to slope and neighbourhood competition [J]. Annals of Botany, 2002, 89(3): 301-310. DOI: 10.1093/aob/mcf042.
[19] SHI P J, ZHENG X, RATKOWSKY D A,et al. A simple method for measuring the bilateral symmetry of leaves [J]. Symmetry, 2018, 10(4): 118. DOI: 10.3390/sym10040118.
[20] 方炎明. 中国鹅掌楸的地理分布与空间格局[J]. 南京林业大学学报, 1994, 18(2): 13-18.DOI:10.3969/j.issn.1000-2006.0994.02.003.
FANG Y M.Geographical distribution and spatial pattern of Liriodendron chinense(Hemsl.)Sarg. [J]. Journal of Nanjing Forestry University, 1994, 18(2): 13-18.
[21] 向其柏,王章荣.杂交马褂木的新名称——亚美马褂木[J].南京林业大学学报(自然科学版),2012,36(2):1-2.DOI:10.3969/j.jssn.1000-2006.2012.02.001.
SHANG C B, WANG Z R.A new scientific name of hybrid Liriodendron—L. sino-americanum[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(2):1-2.
[22] SHI P J, HUANG J G, HUI C,et al. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape [J]. Frontiers of Plant Science, 2015, 6: 856. DOI: 10.3389/fpls.2015.00856.
[23] SHI P J, RATKOWSKY D A, LI Y, et al. A general leaf-area geometric formula exists for plants-Evidence from the simplified Gielis equation [J]. Forest, 2018, 9(11),714:DOI:10.3390/f9110714.
[24] SMITH R J.Use and misuse of the reduced major axis for line-fitting [J]. American Journal of Physical Anthropology, 2009, 140: 476-786. DOI: 10.1002/ajpa.21090.
[25] SANDHU H S, SHI P, KUANG X,et al. Applications of the bootstrap to insect physiology [J]. Florida Entomologist, 2011, 94: 1036-1041.
[26] SHI P J, XU Q, SANDHU H S,et al. Comparison of dwarf bamboos(Indocalamus sp.)leaf parameters to determine relationship between spatial density of plants and total leaf area per plant [J]. Ecology and Evolution, 2015, 5(20): 4578-4589. DOI: 10.1002/ece3.1728.
[27] CORETEAM R. A language and environment for statistical computing, Vienna [R]. Austria: R Foundation for Statistical Computing, 2015. Available online: https://www.R-project.org/(accessed on 17 April 2018).
[28] BALLANTYNE IV F, KERKHOFF A J. The observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation[J]. Oikos, 2007, 116(1): 174-180. DOI: 10.1111/j.2006.0030-1299.15383.x.
[29] COHEN J E, XU M, SCHUSTER W S F.Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling [J]. Proceedings of the Royal Society of London B-Biological Sciences, 2013, 280(1757): 20122955. DOI: 10.1098/rspb.2012.2955.
[30] LIN S Y, SHAO L, HUI C, et al. The effect of temperature on the developmental rates of seedling emergence and leaf-unfolding in two dwarf bamboo species [J]. Trees-Structure and Function, 2018, 32: 751-763. DOI: 10.1007/s00468-018-1669-0.
[31] SHI P J, SANDHU H S, REDDY G V P.Dispersal distance determines the exponent of the spatial Taylor’s power law [J]. Ecological Modelling, 2016, 335: 48-53. DOI: 10.1016/j.ecolmodel.2016.05.008.
[32] WANG P, RATKOWSKY D A, XIAO X, et al. Taylor’s power law for leaf bilateral symmetry [J]. Forests, 2018, 9(8): 500. DOI: 10.3390/f9080500.
[33] LIN S, ZHANG L, REDDY G V P, et al. A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation [J]. Ecology and Evolution, 2016, 6: 6798-6806. DOI: 10.1002/ece3.2407.
[34] KüPPERS M.Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships [J]. Trends in Ecology and Evolution, 1989, 4: 375-379.
[35] WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size [J]. Science, 2017, 357(6354): 917-921. DOI: 10.1126/science.aa14760.


收稿日期:2018-08-08 修回日期:2018-09-11
更新日期/Last Update: 2019-05-15