[1]王 莉,李昌荣,李发根,等.大花序桉群体适应性相关的SSR位点[J].南京林业大学学报(自然科学版),2019,43(05):059-66.[doi:10.3969/j.issn.1000-2006.201808044]
 WANG Li,LI Changrong,LI Fagen,et al.SSR loci associated with population adaptation in Eucalyptus cloeziana[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(05):059-66.[doi:10.3969/j.issn.1000-2006.201808044]
点击复制

大花序桉群体适应性相关的SSR位点
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年05期
页码:
059-66
栏目:
研究论文
出版日期:
2019-09-20

文章信息/Info

Title:
SSR loci associated with population adaptation in Eucalyptus cloeziana
文章编号:
1000-2006(2019)05-0059-08
作者:
王 莉1李昌荣2李发根1周长品1翁启杰1吕佳斌1 陈健波2陈剑成3甘四明12
(1. 中国林业科学研究院热带林业研究所, 热带林业研究国家林业局重点实验室,广东 广州 510520;2. 广西壮族 自治区林业科学研究院, 广西优良用材林资源培育重点实验室,中南速生材繁育国家林业局重点实验室, 广西 南宁 530002;3. 玉林市林业科学研究所, 广西 容县 537501)
Author(s):
WANG Li1LI Changrong2LI Fagen1ZHOU Changpin1WENG Qijie1 L? Jiabin1CHEN Jianbo2CHEN Jiancheng3GAN Siming 12?
(1. Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; 2. Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation & Key Laboratory of Central South Fast-growing Timber Cultivation of Forestry Ministry of China, Guangxi Forestry Research Institute, Nanning 530002, China; 3. Yulin Forestry Research Institute, Rongxian 537501, China)
关键词:
大花序桉SSR 标记气候因子正向选择群体适应性地理隔离
Keywords:
Eucalyptus cloeziana SSR marker climatic factor positive selection population adaptation isolation by distance (IBD)
分类号:
S718. 51
DOI:
10.3969/j.issn.1000-2006.201808044
文献标志码:
A
摘要:
【目的】检测大花序桉群体与环境适应性相关的基因组位点,为种质资源保护和利用提供分子生物学信息。【方法】利用84 个SSR 标记(包括29 个基因组SSR 和55 个EST-SSR)分析引种到广西,来源于澳大利亚昆土兰州北部和南部各7 个大花序桉群体,通过Mantel 检验确定群体间是否存在地理隔离;检测群体间分化系数(Fst)离群值的受选择位点;并基于空间分析法检测与群体气候因子显著相关的等位片段,将显著相关位点的序列与NCBI 数据库比对进行功能注释。【结果】大花序桉北部与南部群体间存在地理隔离,基于19 个气候因子的聚类分析将北方与南方群体分为独立的组,这表明气候因子亦驱动了群体的分化。共检测到Fst 离群值的受选择SSR 位点39 个(46. 4%),其中,LOSITAN 软件检测到12 个正向选择位点和17 个平衡选择位点。5 个Fst离群值位点的6 个等位片段与1 个或多个气候因子显相关(P<0. 001),其等位频率在北部与南部群体间差异明显,其中,Embra6-118 bp 与最冷月最低气温(Tmcm)显著相关,位点DNA 序列的功能注释为碱性螺旋-环-螺旋(basic helix-loop-helix, bHLH)转子bHLH155;Embra20-121 bp 与最暖季度降水量(Pwq)显著相关,位点的功能注释为蔗糖转运蛋白(sucrose transporters);EUCeSSR676-168 bp 与Tmcm、Pwq、年均气温(Tma ) 和最暖月最高气温(Tmwm)均显著相关,位点的功能注释为光系统Ⅱ稳定性/ 组装因子HCF136 ( photosystem II stability/ assem blyactor HCF136);另外两个显著相关位点EUCeSSR298 和EUCeSSR1009 的功能未知。【结论】大花序桉北部与南部群体的显著分化受长期气候的影响,在第四纪大冰期可能存在北部和南部避难所。与气候因子显著相关的SSR 位点在北部和南部群体间的等位频率差异为基于正向选择的气候适应性提供了分子证据。
Abstract:
【Objective】 Genomic loci that are significantly associated with population adaptation were detected in Eucalyptus cloeziana F. Muell. populations to obtain useful molecular information for germplasm conservation and utilization.【Method】 Seven northern and southern populations of E. cloeziana were analyzed using 84 simple sequence repeats (SSR) markers [29 genomic SSRs and 55 expressed sequence tag (EST) derived SSRs]. Isolation by distance (IBD) among populations was determined using Mantel test. Outlier loci of F-statistics of between-population differentiation (Fst) and their significant allelic associations with habitat climatic variables were investigated for all the SSR loci, with further functional annotation of the significantly associated loci against the NCBI non-redundant protein database. 【Result】 IBD was revealed between the northern and southern populations of E. cloeziana, and the clustering analysis based on 19 climatic variables also resulted in division of the northern and southern populations into independent groups, suggesting the climatic effect on driving the population divergence. A total of 39 Fst outliers (46. 4%) were identified as selective loci. Specifically, the software LOSITAN detected 12 positive and 17 balancing selection loci. Six alleles from five outlier loci were identified with spatial analysis methods, each associated significantly with one or more climatic factors(P < 0. 001) and showed dramatic difference in allelic frequency between the northern and southern populations.Among the six significant alleles, Embra6-118 bp was associated with the minimum temperature of the coldest month (Tmcm), with the locus Embra6 functionally annotated as basic helix-loop-helix (bHLH) transcript factor bHLH155.The allele Embra20-121 bp was associated with the precipitation of the warmest quarter ( Pwq ), with Embra20 functionally annotated as sucrose transporters. EUCeSSR676-168 bp was associated with Tmcm, Pwq, the mean annual temperature (Tma) and the minimum temperature of the warmest month (Tmwm), with the locus functionally annotated as photosystem II stability/ assembly factor HCF136. However, the two other significant markers EUCeSSR298 and EUCeSSR1009 were of unknown function. 【Conclusion】 The divergence between the northern and southern populations of E.cloeziana was strongly related with historical climate, and there might be glacial refugia in the northern and southern zones during the Quaternary. The marked difference in the frequency of climate-associated SSR alleles between the northern and southern populations provides molecular evidence for positive selection oriented climatic adaptation in E.cloeziana.

参考文献/References:

[1] DALAL R C, ALLEN D E, LIVESLEY S J, et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes:a review[J]. Plant and Soil, 2008, 309(1/2): 43-76. [2] 徐小军, 周国模, 杜华强, 等. 缺失数据插补方法及其参数估计窗口大小对毛竹林CO2 通量估算的影响[J]. 林业科学, 2015, 51 ( 9): 141 - 149. DOI: 10. 11707/ j. 1001 -7488. 20150918. XU X J, ZHOU G M, DU H Q, et al. Effects of interpolation and window sizes in phyllostachys edulis forest for parameter esti-118 第5 期张 悦,等:洪泽湖地区杨树人工林碳水通量昼夜和季节变化特征mation on calculation of CO2 flux[J]. Scientia Silvae Sinicae,2015, 51(9): 141-149. [3] 张丹丹, 莫柳莹, 陈新, 等. 氮沉降对温带森林土壤甲烷氧化菌的影响[J]. 生态学报, 2017, 37(24): 8254- 8263.DOI:10. 5846/ stxb201701080064. ZHANG D D, MO L Y, CHEN X, et al. Effects of nitrogen addition on methanotrophs in temperate forest soil[J]. Acta Ecologica Sinica, 2017, 37(24): 8254-8263. [4] 王瑶. 南岭三种主要森林类型土壤甲烷通量研究[D]. 长沙: 中南林业科技大学, 2017.WANG Y. Study on soil methane fluxes of three forest types in Nanling Mountains[D]. Changsha: Central South University of Forestry & Technology, 2017. [5] 邓湘雯, 杨晶晶, 陈槐, 等. 森林土壤氧化(吸收)甲烷研究进展[J]. 生态环境学报, 2012, 21(3): 577-583. DOI:10.3969/ j. issn. 1674-5906. 2012. 03. 031.DENG X W, YANG J J, CHEN H, et al. Advances in the research of methane oxidation in forest soils[J]. Ecology and Environment Sciences, 2012, 21(3): 577-583. [6] ANONYMOUS. Peer review report 2 on “methane exchange in a poorly-drained black spruce forest over permafrost observed using the eddy covariance technique”[J]. Agricultural and Forest Meteorology,2016, 217: 41. DOI:10. 1016/ j. agrformet. 2016. 01.054. [7] 菊花, 申国珍, 马明哲, 等. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应[J]. 植物生态学报, 2016, 40(10): 1049-1063. DOI:10. 17521/ cjpe.2016. 0069. JU H, SHEN G Z, MA M Z, et al. Greenhouse gas fluxes of typicalnorthern subtropical forest soils: impacts of land use change and reduced precipitation[J]. Chinese Journal of Plant Ecology,2016, 40(10): 1049-1063. [8] 孙向阳. 北京低山区森林土壤中CH4 排放通量的研究[J].土壤与环境, 2000, 9(3): 173-176. DOI:10. 3969/ j. issn.1674-5906. 2000. 03. 001.SUN X Y. CH4 emission flux of forest soils in lower mountain area, Beijing[ J]. Soil and Environmental Sciences, 2000, 9(3): 173-176. [9] 刘实, 王传宽, 许飞, 等. 4 种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J]. 生态学报, 2010, 30(15):4075-4084.LIU S, WANG C K, XU F, et al. Soil effluxes of carbon dioxide,methane and nitrous oxide during non-growing season for four temperate forests in northeastern China[J]. Acta Ecologica Sinica,2010, 30(15): 4075-4084. [10] 张强, 沈燕, 韩天宇, 等. 湖南莽山4 种林型甲烷通量及其影响因子[J]. 中南林业科技大学学报, 2017, 37(9): 104-111. DOI:10. 14067/ j. cnki. 1673-923x. 2017. 09. 018.ZHANG Q, SHEN Y, HAN T Y, et al. Methane fluxes and the effective factors of four forests in Mangshan, Hunan Province[J].Journal of Central South University of Forestry & Technology,2017, 37(9): 104-111. [11] 张丽丽, 印亮, 郑丽丽, 等. 模拟氮沉降对鼎湖山典型森林地表烷烃、烯烃通量的影响[ J]. 生态学杂志, 2017, 36(12 ): 3462 - 3469. DOI: 10. 13292/ j. 1000 - 4890.201712. 001.ZHANG L L, YIN L, ZHENG L L, et al. Effects of simulated nitrogen deposition on alkane and alkene fluxes from forest floor at Dinghushan[J]. Chinese Journal of Ecology, 2017, 36(12): 3462-3469. [12] ZHANG C H, JU W M, CHEN J M, et al. China??s forest biomass carbon sink based on seven inventories from 1973 to 2008[J]. Climatic Change, 2013, 118(3/4): 933-948. DOI:10. 1007/ s10584-012-0666-3. [13] 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10): 2308-2316. DOI:10. 13287/ j. 1001-9332. 2008. 0396.FANG S Z. Silviculture of poplar plantation in China: a review[J]. Chinese Journal of Applied Ecology, 2008, 19 ( 10):2308-2316. [14] 李奇, 朱建华, 冯源, 等. 中国主要人工林碳储量与固碳能力[J]. 西北林学院学报, 2016, 31(4): 1-6. DOI:10. 3969/j. issn. 1001-7461. 2016. 04. 01.LI Q, ZHU J H, FENG Y, et al. Carbon stocks and carbon sequestration capacity of the main plantations in China[J]. Journal of Northwest Forestry University, 2016, 31(4): 1-6. [15] 康满春. 北方典型杨树人工林能量分配与碳水通量模拟[D]. 北京: 北京林业大学, 2016.KANG M C. Energy partitioning and modelling of carbon and water fluxes of a poplar plantation ecosystem in northern China[D].Beijing: Beijing Forestry University, 2016. [16] 魏远, 张旭东, 江泽平, 等. 湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究[J]. 林业科学研究, 2010, 23(5): 656-665. DOI:10. 13275/ j. cnki. lykxyj. 2010. 05. 011.WEI Y, ZHANG X D, JIANG Z P, et al. Study on the seasonaldynamic of net ecosystem exchange over a poplar plantation of Yueyang City in Hunan Province[J]. Forest Research, 2010, 23 (5): 656-665. [17] 彭镇华, 王妍, 任海青, 等. 安庆杨树林生态系统碳通量及其影响因子研究[J]. 林业科学研究, 2009, 22(2): 237-242. DOI:10. 3321/ j. issn:1001-1498. 2009. 02. 015.PENG Z H, WANG Y, REN H Q, et al. Research on the variation of carbon flux and the relationship of environmental factors and carbon flux of Populus forest ecosystem in the reaches of Yangtze River in Anqing[J]. Forest Research, 2009, 22(2):237-242. [18] 耿绍波. 河南西平杨树人工林生态系统碳通量及其环境响应研究[D]. 北京: 北京林业大学, 2011.GENG S B. Study on the carbon flux observation over poplar plantation ecosystem of Xiping City in Henan Province of China [D]. Beijing: Beijing Forestry University, 2011. [19] 王妍, 彭镇华, 江泽慧, 等. 长江滩地杨树林生态系统的碳通量特征[J]. 林业科学, 2009, 45(11): 156-160. DOI:10.3321/ j. issn:1001-7488. 2009. 11. 025.WANG Y, PENG Z H, JIANG Z H, et al. Characteristics of carbon flux of Populus forest in the reaches of Yangtze River in Hunan[J]. Scientia Silvae Sinicae, 2009, 45(11): 156-160. [20] KOCHENDORFER J, CASTILLO E G, HAAS E, et al. Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest[J]. Agricultural and Forest Meteorology, 2011,151(5): 544-553. DOI:10. 1016/ j. agrformet. 2010. 12. 012. [21] 徐自为, 刘绍民, 宫丽娟, 等. 涡动相关仪观测数据的处理与质量评价研究[J]. 地球科学进展, 2008, 23(4): 357-370. DOI:10. 3321/ j. issn:1001-8166. 2008. 04. 005.XU Z W, LIU S M, GONG L J, et al. A study on the data processing and quality assessment of the eddy covariance system[J].119南京林业大学学报( 自然科学版) 第43 卷Advances in Earth Science, 2008, 23(4): 357-370. [22] 柳媛普, 李锁锁, 吕世华, 等. 几种通量资料修正方法的比较[J]. 高原气象, 2013, 32(6): 1704-1711. DOI:10. 7522/j. issn. 1000-0534. 2013. 00127.LIU Y P, LI S S, LV S H, et al. Comparison of flux correction methods for eddy-covariance measurement[J]. Plateau Meteorology,2013, 32(6): 1704-1711. [23] 张法伟, 李英年, 曹广民, 等. 青海湖北岸高寒草甸草原生态系统CO2 通量特征及其驱动因子[J]. 植物生态学报,2012, 36 ( 3 ): 187 - 198. DOI: 10. 3724/ SP. J. 1258.2012. 00187. ZHANG F W, LI Y N, CAO G M, et al. CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China[J]. Chinese Journal of Plant Ecology, 2012, 36(3): 187-198. [24] 韩帅. 涡度相关法估算长江中下游滩地杨树人工林生产力[D]. 北京: 中国林业科学研究院, 2008.HAN S. Productivity estimation of the poplar plantations on the beaches in middle and low reaches of Yangtze River using eddy covariance measurement[D]. Beijing: Chinese Academy of Forestry,2008. [25] JASSAL R S, BLACK T A, AREVALO C, et al. Carbon sequestration and water use of a young hybrid poplar plantation in northcentralAlberta[J]. Biomass and Bioenergy, 2013, 56: 323-333. DOI:10. 1016/ j. biombioe. 2013. 05. 023. [26] VERLINDEN M S, BROECKX L S, ZONA D, et al. Net ecosystemproduction and carbon balance of an SRC poplar plantationduring its first rotation[J]. Biomass and Bioenergy, 2013, 56:412-422. DOI:10. 1016/ j. biombioe. 2013. 05. 033. [27] ZHOU J, ZHANG Z Q, SUN G, et al. Response of ecosystemcarbon fluxes to drought events in a poplar plantation in NorthernChina[J]. Forest Ecology and Management, 2013, 300: 33-42. DOI:10. 1016/ j. foreco. 2013. 01. 007. [28] 徐勇峰, 季淮, 韩建刚, 等. 洪泽湖湿地杨树林生长季碳通量变化特征及其影响因子[J]. 生态学杂志, 2018, 37(2):322-331. DOI:10. 13292/ j. 1000-4890. 201802. 016.XU Y F, JI H, HAN J G, et al. Variation of net ecosystem carbonflux in growing season and its driving factors in a poplar plantationfrom Hung-tse Lake wetland[J]. Chinese Journal of Ecology, 2018, 37(2): 322-331. [29] 牛晓栋, 江洪, 张金梦, 等. 浙江天目山老龄森林生态系统CO2 通量特征[J]. 应用生态学报, 2016, 27(1): 1-8. DOI:10. 13287/ j. 1001-9332. 201601. 010.NIU X D, JIANG H, ZHANG J M, et al. Characteristics of CO2flux in an old growth mixed forest in Tianmu Mountain, Zhejiang,China[J]. Chinese Journal of Applied Ecology, 2016, 27(1):1-8. [30] 赵仲辉, 张利平, 康文星, 等. 湖南会同杉木人工林生态系统CO2 通量特征[J]. 林业科学, 2011, 47(11): 6- 12.DOI: 10. 11707/ j. 1001-7488. 20111102.ZHAO Z H, ZHANG L P, KANG W X, et al. Characteristics ofCO2 flux in a Chinese fir plantation ecosystem in Huitong County,Hunan Province[J]. Scientia Silvae Sinicae, 2011, 47(11): 6-12. [31] 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2 通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39.DOI:10. 13332/ j. 1000-1522. 20150020.LI X M, ZHANG Q L. Impact of climate factors on CO2 fluxcharacteristics in a Larix gmelinii forest ecosystem[J]. Journal ofBeijing Forestry University, 2015, 37(8): 31-39. [32] 凌威. 长沙市三种林型甲烷通量研究[D]. 长沙: 中南林业科技大学, 2015.LING W. Research of methane (CH4 ) flux from three types offorest in Changsha City, Hunan Province[D]. Changsha: CentralSouth University of Forestry & Technology, 2015. [33] 杨晶晶. 亚热带4 种典型森林生态系统地表甲烷通量研究[D]. 长沙: 中南林业科技大学, 2012.YANG J J. Variations of soil methane (CH4 ) flux in 4 typicalsubtropical forest ecosystems[D]. Changsha: Central South Universityof Forestry & Technology, 2012. [34] SHOEMAKER J K, KEENAN T F, HOLLINGER D Y, et al. Forestecosystem changes from annual methane source to sink depending onlate summer water balance[J]. Geophysical Research Letters, 2014,41(2): 673-679. DOI:10.1002/2013gl058691. [35] UEYAMA M, HAMOTANI K, NISHIMURA W, et al. Continuousmeasurement of methane flux over a larch forest using a relaxededdy accumulation method[J]. Theoretical and Applied Climatology,2012, 109(3/4): 461-472. DOI:10. 1007/ s00704-012-0587-0. [36] 谭丽萍, 刘苏峡, 莫兴国, 等. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 2015, 39(8): 773-784.DOI:10. 17521/ cjpe. 2015. 0074.TAN L P, LIU S X, MO X G, et al. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China[J ]. Chinese Journal of Plant Ecology, 2015, 39 ( 8 ):773-784.

相似文献/References:

[1]骆 鹏,曹玉婷,莫家兴,等.柳杉无性系指纹图谱的构建及遗传多样性分析[J].南京林业大学学报(自然科学版),2017,41(04):191.[doi:10.3969/j.issn.1000-2006.201611006]
 LUO Peng,CAO Yuting,MO Jiaxing,et al.Analysis of genetic diversity and construction of DNA fingerprinting of clones in Cryptomeria fortune[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(05):191.[doi:10.3969/j.issn.1000-2006.201611006]
[2]李昌荣,陈健波,郭东强,等.锯材大花序桉生长和材性的综合指数选择[J].南京林业大学学报(自然科学版),2019,43(01):001.[doi:10.3969/j.issn.1000-2006.201805018]
 LI Changrong,CHEN Jianbo,GUO Dongqiang,et al.Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(05):001.[doi:10.3969/j.issn.1000-2006.201805018]

备注/Memo

备注/Memo:
收稿日期:2018-11-09    修回日期:2018-12-19  基金项目:广西创新驱动发展专项(桂科AA17204087-3);“广西主要用材林资源高效培育与利用人才小高地”专项(桂财社函 [2018]112 号)。  第一作者:王莉(wangli3hao@ 126. com),实验工作和数据分析的具体执行人,完成论文初稿的写作与修改,ORCID (0000-0002- 3206-7854);李昌荣(andyharry@ 126. com), 负责采样和实验工作及数据分析。?通信作者:甘四明(siminggan@ caf. ac. cn),研究员,ORCID (0000-0001-6677-9860)。  引文格式:王莉,李昌,李发根,等. 大花序桉群体适应性相关的SSR 位点[J]. 南京林业大学学报(自然科学版),2019,43(5): 59-66.
更新日期/Last Update: 2019-10-08