[1]李 丽,MANNING William,王效科.大气臭氧浓度升高对樱桃萝卜生长和生物量的影响[J].南京林业大学学报(自然科学版),2019,43(05):187-192.[doi:10.3969/j.issn.1000-2006.201809011]
 LI Li,MANNING William,WANG Xiaoke.Effects of elevated atmospheric ozone on the growth and biomass of Raphanus sativus L.[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(05):187-192.[doi:10.3969/j.issn.1000-2006.201809011]





Effects of elevated atmospheric ozone on the growth and biomass of Raphanus sativus L.
李 丽12MANNING William3王效科2
(1.南京林业大学竹类研究所,江苏 南京 210037; 2.中国科学院生态环境研究中心,城市与区域生态国家重点实验室, 北京 100085; 3.美国麻省大学阿姆赫斯特分校农业科学学院,马萨诸塞州 阿姆赫斯特 01003)
LI Li12 MANNING William3 WANG Xiaoke2
(1.Bamboo Research Institute,Nanjing Forestry University, Nanjing 210037, China; 2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 3. Stockbridge School of Agriculture, University of Massachusetts, Amherst MA 01003, USA)
大气臭氧 AOT40 樱桃萝卜 肉质根 生物量 受害症状
atmospheric ozone(O3) AOT40 Raphanus sativus L. hypocotyl biomass injury symptom
【目的】近地层臭氧(O3)是具有强氧化性的二次污染物,可损伤植物内部结构和生理功能,造成作物生长量和品质下降。了解不同大气O3浓度下樱桃萝卜各生长时期的叶片受害和生物量状况,分析其受害症状、生物量与O3暴露剂量之间的相关关系,为探讨O3浓度升高对农作物产量的影响及作物大气O3标准的制定提供参考。【方法】利用12个生长室设置了4个大气臭氧(O3)浓度(30、50、70和90 nmol/mol),对樱桃萝卜叶片的受害症状和第7、14、21和28天的生长和生物量变化进行了研究,并拟合计算了O3暴露剂量AOT40和叶片受害症状、生物量变化间的相关关系。【结果】① 70和90 nmol/mol O3处理下,第7天观测发现樱桃萝卜子叶上部出现褪绿斑点, 整叶局部薄厚不均,叶片受害症状随着O3熏蒸时间的增加而加重,出现O3受害症状的叶片比例和O3暴露剂量AOT40极显著相关(P<0.01)。②处理第21天时观测发现,O3熏蒸均对樱桃萝卜整体干质量产生影响; 与30 nmol/mol处理的相比,第28天时观察发现,50、70和90 nmol/mol O3处理后的樱桃萝卜肉质根干质量分别下降了45.1%、57.3% 和79.9%。干质量下降的幅度大于体积的,肉质根体积和干物质量都与O3暴露剂量AOT40线性相关。【结论】樱桃萝卜的生长和生物量受到O3浓度和累积时间两个因素共同影响,O3浓度升高显著抑制了樱桃萝卜生长,造成叶片受损,可食用肉质根体积和总干物质量显著下降。
【Objective】 High levels of atmospheric ozone(O3), which is an important secondary air pollutant with strong oxidizing capability, can reduce the quantity and quality of vegetation production by damaging the functions and physical structure of plant cells. Therefore, in order to establish a basic understanding of the effects of O3 on crop production, the present study investigated the effects of different O3 concentrations, including AOT40, on the growth(hypocotyl length), biomass(dry weight)and leaf health of cherry reddish (Raphanus sativus). 【Method】 Raphanus sativus were grown in growth chambers under four different O3 concentrations(30, 50, 70 and 90 nmol/mol), and the growth, biomass and foliar injury status of the plants were assessed on a weekly basis for 4 weeks. 【Result】 ① The O3 injury symptoms that were observed under 70 and 90 nmol/mol(i.e., cotyledons with chlorotic stippling and inconsistent thickness)developed within the first week of O3 fumigation, and the injury symptoms intensified with the duration of treatment. Furthermore, the proportion of leaves with injury symptoms was positively correlated with AOT40(accumulated O3 exposure over a threshold of 40(nmol/mol)(P<0.01). ② Meanwhile, elevated O3 concentrations significantly reduced dry mass and hypocotyl size since the 3rd week. At the end of 4th week, the dry mass of hypocotyl had been reduced by 45.1%, 57.3% and 79.9% in 50, 70 and 90 nmol/mol O3 treatments, respectively, when compared to the control group. In addition, the reduction of hypocotyl exhibited a linear relationship with AOT40, and dry mass declined more rapidly than hypocotyl size.【Conclusion】The growth, biomass and injury symptoms of Raphanus sativus were affected by both O3 concentration and duration of exposure.


[1] FREI M, KOHNO Y, TIETZE S, et al. The response of rice grain quality to ozone exposure during growth depends on ozone level and genotype[J]. Environmental Pollution, 2012, 163: 1 99-206. DOI:10.1016/j.envpol.2011.12.039.
[2] WEDLICH K V, RINTOUL N, PEACOCK S, et al. Effects of ozone on species composition in an upland grassland[J]. Oecologia, 2012, 168(4): 1137-1146. DOI:10.1007/s00442-011-2154-2.
[3] CHUWAH C, VAN NOIJE T, VAN VUUREN D P, et al. Global impacts of surface ozone changes on crop yields and land use[J]. Atmospheric Environment, 2015, 106: 11-23. DOI:10.1016/j.atmosenv.2015.01.062.
[4] GIMENO B S, BERMEJO V, REINERT R A, et al. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain[J]. New Phytologist, 1999, 144(2): 245-260. DOI:10.1046/j.1469-8137.1999.00509.x. [5] TAO F L, FENG Z Z, TANG H Y, et al. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination[J]. Atmospheric Environment, 2017,153: 182-193. DOI:10.1016/j.atmosenv.2017.01.032.
[6] 郑启伟, 王效科, 冯兆忠, 等. 臭氧和模拟酸雨对冬小麦气体交换、生长和产量的复合影响[J]. 环境科学学报, 2007, 27(9): 1542-1548. DOI:10.13671/j.hjkxxb.2007.09.019. ZHENG Q W, WANG X K, FENG Z Z, et al. Combined impact of ozone and simulated acid rain on gas exchange, growth and yield of field-grown winter wheat[J]. Acta Scientiae Circumstantiae, 2007, 27(9): 1542-1548.
[7] 郑启伟, 王效科, 冯兆忠, 等. 用旋转布气法开顶式气室研究臭氧对水稻生物量和产量的影响[J]. 环境科学, 2007, 28(1): 170-175. DOI:10.3321/j.issn:0250-3301.2007.01.031. ZHENG Q W, WANG X K, FENG Z Z, et al. Effects of elevated ozone on biomass and yield of rice planted in the open-top chamber with revolving ozone distribution[J]. Chinese Journal of Environmental Science, 2007, 28(1): 170-175.
[8] FUHRER J, SKÄRBY L, ASHMORE M R. Critical levels for ozone effects on vegetation in Europe[J]. Environmental Pollution, 1997, 97(1/2): 91-106. DOI:10.1016/s0269-7491(97)00067-5.
[9] KARLSSON P E, UDDLING J, SKÄRBY L, et al. Impact of ozone on the growth of birch(Betula pendula)saplings[J]. Environmental Pollution, 2003, 124(3): 485-495. DOI:10.1016/s02 69-7491(03)00010-1.
[10] ELAGÖZ V, HAN S S, MANNING W J. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans(Phaseolus vulgaris L.)indicate phenotypic plasticity[J]. Environmental Pollution, 2006, 140(3): 395-405. DOI:10.1016/j.envpol.2005.08.024.

[12] KOSTKA-RICK R, MANNING W J. Dose-response studies with ethylenediurea(EDU)and radish[J]. Environmental Pollution, 1993, 79(3): 249-260. DOI:10.1016/0269-7491(93)90097-8.
[12] WAN W X, MANNING W J, WANG X K, et al. Ozone and ozone injury on plants in and around Beijing, China[J]. Environmental Pollution, 2014, 191: 215-222. DOI:10.1016/j.envpol.2014.02.035.
[13] 李丽, 牛俊峰, 文志, 等. 干旱和臭氧浓度升高对元宝枫早生和晚生叶片色素和脱落酸含量的影响[J]. 生态学报, 2016, 36(21): 6804-6811. DOI:10.5846/stxb201505060933. LI L, NIU J F, WEN Z, et al. The effects of elevated ozone and chronic drought on leaf pigments and abscisic acid contents in early and late-flush leaves of Shantung maple(Acer truncatum Bunge)[J]. Acta Ecologica Sinica, 2016, 36(21): 6804-6811.
[14] BRENDLEY B W, PELL E J. Ozone-induced changes in biosynthesis of rubisco and associated compensation to stress in foliage of hybrid poplar [J]. Tree Physiology, 1998, 18(2): 81-90. DOI: 10.1093/treephys/18.2.81.
[15] PELL E,TEMPLE P, FRIEND A. Compensation as a plant response to ozone and associated stresses: an analysis of ROPIS experiments [J]. Journal of Environmental Quality, 1994, 23(3): 429-43641. DOI: 10.2134/jeq1994.00472425002300030005x.
[16] 万五星, 夏亚军, 张红星, 等. 北京远郊区臭氧污染及其对敏感植物叶片的伤害[J]. 生态学报, 2013, 33(4): 1098-1105. DOI:10.5846/stxb201203220388. WAN W X, XIA Y J, ZHANG H X, et al. The ambient ozone pollution and foliar injury of the sensitive woody plants in Beijing exurban region[J]. Acta Ecologica Sinica, 2013, 33(4): 1098-1105.
[17] CANO I, CALATAYUD V, CERVERO J, et al. Ozone effects on three Sambucus species[J].Environmental Monitoring and Assessment, 2007, 128(1): 83-91. DOI: 10.1007/s10661-006-9417-0.
[18] BUSSOTTI F, FERRETTI M. Visible injury, crown condition, and growth responses of selected Italian forests in relation to ozone exposure[J]. Environmental Pollution, 2009, 157(5): 1427-1437. DOI:10.1016/j.envpol.2008.09.034.
[19] KASURINEN A, KEINANEN M M, KAIPAINEN S, et al. Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons [J]. Global Change Biology, 2005, 11(7): 1167-1179. DOI: 10.1111/j.1365-2486.2005.00970.x.
[20] LI L, MANNING W J, TONG L, et al. Chronic drought stress reduced but not protected Shantung maple(Acer truncatum Bunge)from adverse effects of ozone(O3)on growth and physiology in the suburb of Beijing, China [J]. Environmental Pollution, 2015, 201: 34-41. DOI:10.1016/j.envpol.2015.02.023.

[22] HELD A A, MOONEY H A, GORHAM J N. Acclimation to ozone stress in radish: leaf demography and photosynthesis [J]. New Phytologist, 1991, 118(3): 417-423. DOI:10.1111/j.1469-8137.1991.tb00023.x.
[22] TINGEY D T, HECK W W, REINERT R A. Effect of low concentrations of ozone and sulfur dioxide on foliage, growth and yeild of radish [J]. Science, 1971, 127(3313): 595-598.


收稿日期:2018-09-12 修回日期:2019-04-10 基金项目:国家自然科学基金青年基金项目(31700439); 中国博士后基金面上项目(2018M631595); 国家重点研发计划(2017YFE0127700)。 第一作者:李丽(lili7381741@yeah.net),博士,ORCID(0000-0003-0077-114X)。引文格式:李丽,MANNING William,王效科. 大气臭氧浓度升高对樱桃萝卜生长和生物量的影响[J]. 南京林业大学学报(自然科学版),2019,43(5):187-192.
更新日期/Last Update: 2019-10-08