[1]欧阳芳群,祁生秀,范国霞,等.青海云杉自由授粉家系遗传变异与基于BLUP的改良代亲本选择[J].南京林业大学学报(自然科学版),2019,43(06):053-59.
 OUYANG Fangqun,QI Shengxiu,FAN Guoxia,et al.Genetic variation and improved parents selection of open pollination familiesof Picea crassifolia Kom. basing one BLUP method[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):053-59.
点击复制

青海云杉自由授粉家系遗传变异与基于BLUP的改良代亲本选择
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年06期
页码:
053-59
栏目:
研究论文
出版日期:
2019-11-25

文章信息/Info

Title:
Genetic variation and improved parents selection of open pollination families of Picea crassifolia Kom. basing one BLUP method
文章编号:
1000-2006(2019)06-0053-07
作者:
欧阳芳群1祁生秀2范国霞2蔡启山2陈海庆2高万里2 胡长寿2王军辉1*
(1.林木遗传育种国家重点实验室,中国林业科学研究院林业研究所,国家林业局林木培育重点实验室,北京 100091; 2.青海省大通县东峡林场,青海 大通 810100)
Author(s):
OUYANG Fangqun1 QI Shengxiu2 FAN Guoxia2 CAI Qishan2 CHEN Haiqing2 GAO Wanli2 HU Changshou2 WANG Junhui1*
(1. State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy Forestry, Key Laboratory of Tree Breeding and Cultivation,State Forestry Administration, CAF,Beijing 100091,China; 2. Dongxia Forestry Centre of Qinghai Province,Datong 810100, China)
关键词:
青海云杉 改良代亲本 最佳线性无偏预测(BLUP) 配合选择 育种值
Keywords:
Picea crassifolia Kom. improved generation of parents best linenr unbiased prediction(BLUP) combining selection breeding value
分类号:
S718.46
摘要:
【目的】最佳线性无偏预测(BLUP)方法是对遗传种质在不平衡环境下利用混合线性模型方程对育种值进行无偏预测,可有效估算与剔除环境效应,反映真实遗传效应,有较高精确性。应用BLUP方法估算育种值用于改良代亲本选择,对于青海云杉的遗传改良具有积极的参考价值。【方法】本研究在对13 a和14 a的两批青海云杉种子园自由授粉子代测定林的树高遗传分析基础上,利用BLUP方法,通过构建亲缘关系矩阵,对树高育种值进行估测。【结果】结果表明家系及家系和区组互作效应显著影响树高。两批青海云杉种子园自由授粉子代树高的家系遗传力分别为0.17和0.36,单株遗传力均为0.07。基于混合线性模型的BLUP方法估算家系亲本无性系树高育种值和真实树高、单株树高预测值和真实值均具有极显著相关关系,相关系数分别为0.99和0.86。根据家系亲本无性系育种值选出20个优良家系,根据优良家系后向选择母本无性系建立改良种子园的树高现实遗传增益分别为36%和26%。根据单株树高育种值采用配合选择方法从两批家系试验林各选出20个改良代优树,根据前向选择子代优良单株的树高预期遗传增益分别为7.6%和7.9%。【结论】对比后向选择和前向选择树高的遗传增益发现,青海云杉高世代育种中可优先后向选择,选择优良家系母本无性系建立1.5代改良代种子园。
Abstract:
【Objective】 The best linear unbiased prediction(BLUP)method forecasts a breeding value using a mixed linear model equation, which reflects true genetic effects with high accuracy. 【Method】 This study used two open pollination progeny tests of Picea crassifolia Kom. at 13 and 14 years old obtained from a primary clonal seed orchardto evaluate genetic variation in height. A breeding value was predicted using the BLUP method. 【Result】Our results showed that family and interaction effects between family and blocks significantly affected height. The family hereditability for height of the trees from the two open pollination progeny were 0.17 and 0.36, respectively, while the individual hereditability were both 0.07. The Pearson correlation between the original value and the breeding value of the height at family level, or at individual level, were both high, and the Pearson correlation coefficients were 0.99 and 0.86, respectively. According to the breeding value of the parents of the families, 20 elite families were chosen and the reality genetic gain reached 36% and 26%, respectively. According to the individual breeding value estimated using the BLUP method, 20 plus trees were chosen, and the expected genetic gains were 7.6% and 7.9%, respectively. 【Conclusion】By comparing the genetic gain of backward selection and forward selection, it was determined that backward selection is the better choice in high-generation breeding of Picea crassifolia.

参考文献/References:

[1] PIEPHO H P, MÖHRING J, MELCHINGER A E, et al. BLUP for phenotypic selection in plant breeding and variety testing[J]. Euphytica, 2008, 161(1/2): 209-228. DOI:10.1007/s10681-007-9449-8. [2] HODGE G R, WHITE T L. Advanced-generation wind-pollinated seed orchard design[J]. New Forests, 1993, 7(3): 213-236. DOI:10.1007/bf00127387. [3] 杨秀艳, 张守攻, 孙晓梅, 等. 北亚热带高山区日本落叶松自由授粉家系遗传测定与二代优树选择[J]. 林业科学, 2010, 46(8): 45-50. YANG X Y, ZHANG S G, SUN X M, et al. Genetic test of open-pollinated Larix kaempferi families and selection for the second generation elite trees in northern sub-tropical alpine area[J]. Scientia Silvae Sinicae, 2010, 46(8): 45-50. [4] 孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2): 65-71. DOI:10.13332/j.1000-1522.2011.02.020. SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. Journal of Beijing Forestry University, 2011, 33(2): 65-71. DOI:10.13332/j.1000-1522.2011.02.020. [5] DE R, PRATES D F, DE J A, et al. Best linear unbiased prediction(BLUP)of breeding values in Pinus improvement[J]. Parte do Boletim de Pesquisa Florestal, Colombo, 1996(32/33):3-22. [6] 廖柏勇, 莫晓勇, 陈文平, 等. 10年生粗皮桉优良种源家系选择分析——BLUP法[C]//第13次全国林木引种驯化暨遗传育种(南方)学术研讨会.广东:中国林学会树木引种驯化专业委员会与中国林学会育种分会,2010. LIAO B Y, MO X Y, CHEN W P. Analysis on the selection of excellent provenances of 10-year-old eucalyptus grandis:BLUP method [C]// Guangdong: The 13th national forest introduction and domestication and genetic breeding,2010. [7] 刘天颐, 杨会肖, 刘纯鑫, 等. 火炬松基因资源的育种值预测与选择[J]. 林业科学, 2014, 50(8): 60-67. DOI:10.11707/j.1001-7488.20140809. LIU T Y, YANG H X, LIU C X, et al. Prediction of breeding values and selection to the gene resources of loblolly pine[J]. Scientia Silvae Sinicae, 2014, 50(8): 60-67. [8] 马常耕. 高世代种子园营建研究的进展[J]. 世界林业研究, 1994, 7(1): 31-38. DOI:10.13348/j.cnki.sjlyyj.1994.01.006. MA C G. Progress in researches on the construction and Management of advanced generation seed orchards[J]. World Forestry Research, 1994, 7(1): 31-38. [9] RROBINSON G K. That BLUP is a good thing: the estimation of random effects[J]. Statistical Science, 1991, 6(1), 15-32. DOI:10.1214/ss/1177011926. [10] SAS. SAS/STAT User's Guide, Version 6[CP/OL]. 4th end. SAS Institute, Cary, NC, USA. [2018-02-01] http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#titlepage.htm [11] GILMOUR A R. GOGEL B J,CULLIS B R,et al. ASReml User Guide Release 3.0 VSN international Ltd, Hemel Hempstead, HP1 1ES, UK. 2009.www.vsni.co.uk. [12] 王明庥. 森林遗传管理的现代基础理论与技术: 林木遗传育种学[J]. 南京林业大学学报(自然科学版), 2001, 25(5): 1-5. DOI:10.3969/j.issn.1000-2006.2001.05.001. WANG M X. Modern basic theory and technique for forest genetic management: forest genetics and breeding[J]. Journal of Nanjing Forestry University, 2001, 25(5): 1-5. [13] 陈晓阳, 沈熙环. 林木育种学[M]. 北京: 高等教育出版社, 2005. [14] BUSH D, KAIN D, KANOWSKI P, et al. Genetic parameter estimates informed by a marker-based pedigree: a case study with Eucalyptus cladocalyx in southern Australia[J]. Tree Genetics & Genomes, 2014, 11(1): 1-16. DOI:10.1007/s11295-014-0798-x. [15] FRANKHAM R. Introduction to quantitative genetics 4th ed[J]. Trends in Genetics, 1996, 12(7): 280. DOI:10.1016/0168-9525(96)81458-2. [16] RUOTSALAINEN S, LINDGREN D. Predicting genetic gain of backward and forward selection in forest tree breeding[J]. Silvae Genetica, 1998, 47(1):42-50. [17] LEE S J. Breeding strategy for Sitka spruce in Britain: progeny testing and breeding strategies[C]. Edinburgh, Scotland: Proceedings of the Nordic Group for Tree Breeding, 1993: 95-107. [18] EL-KASSABY Y A, CAPPA E P, LIEWLAKSANEEYANAWIN C, et al. Breeding without breeding: is a complete pedigree necessary for efficient breeding?[J]. PLoS One, 2011, 6(10): e25737. DOI:10.1371/journal.pone.0025737. [19] YUAN H W, NIU S H, EL-KASSABY Y A, et al. Simple genetic distance-optimized field deployments for clonal seed orchards based on microsatellite markers: as a case of Chinese pine seed orchard[J]. PLoS One, 2016, 11(6): e0157646. DOI:10.1371/journal.pone.0157646. [20] 袁虎威, 梁胜发, 符学军, 等. 山西油松第二代种子园亲本选择与配置设计[J]. 北京林业大学学报, 2016, 38(3): 47-54. DOI:10.13332/j.1000-1522.20150370. YUAN H W, LIANG S F, FU X J, et al. Parental selection and deployment design in the second-generation seed orchard of Chinese pine in Shanxi Province[J]. Journal of Beijing Forestry University, 2016, 38(3): 47-54. [21] EL-KASSABY Y A, KLÁPT J, GUY R D. Breeding without breeding: selection using the genomic best linear unbiased predictor method(GBLUP)[J]. New Forests, 2012, 43(5/6): 631-637. DOI:10.1007/s11056-012-9338-4. [22] RATCLIFFE B, EL-DIEN O G, KLÁPT J, et al. A comparison of genomic selection models across time in interior spruce(Picea engelmannii × glauca)using unordered SNP imputation methods[J]. Heredity, 2015, 115(6): 547-555. DOI:10.1038/hdy.2015.57. [23] CHEN Z Q, KARLSSON B, WU H X. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden[J]. Tree Genetics & Genomes, 2017, 13: 25. DOI:10.1007/s11295-017-1103-6. [24] BALTUNIS B S, GAPARE W J, WU H X. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia[J]. Silvae Genetica, 2010, 59(1/2/3/4/5/6): 113-124. DOI:10.1515/sg-2010-0014.

备注/Memo

备注/Memo:
收稿日期:2018-12-04 修回日期:2019-09-02 基金项目:国家重点研发计划(2017YFD0600606-09); 中央财政推广项目(ZCT(2016)-007号); 青海省财政推广项目。 第一作者:欧阳芳群(fangqun163@163.com),博士。*通信作者:王军辉(wangjh808@sina.com),研究员,博士,ORCID(0000-0002-2434-2035)。
更新日期/Last Update: 2019-11-30