[1]蒋佳文,温小荣,顾海波,等.基于多站扫描的点云特征参数与材积结构动态分析[J].南京林业大学学报(自然科学版),2019,43(06):083-90.
 JIANG Jiawen,WEN Xiaorong,GU Haibo,et al.Dynamic analysis of point cloud characteristic parameters and volumestructure based on multi-station scan[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):083-90.
点击复制

基于多站扫描的点云特征参数与材积结构动态分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年06期
页码:
083-90
栏目:
研究论文
出版日期:
2019-11-25

文章信息/Info

Title:
Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan
文章编号:
1000-2006(2019)06-0083-08
作者:
蒋佳文1温小荣12顾海波1张峥男1刘方舟3张严利4孙 圆12*
(1.南京林业大学林学院,江苏 南京 210037; 2.南京林业大学,南方现代林业协同创新中心,江苏 南京 210037; 3.南京林业大学信息学院,江苏 南京 210037; 4.Arthur Temple College of Forestry and Agriculture, Stephen F.Austin State University, Nacogdoches, TX 75962, USA)
Author(s):
JIANG Jiawen1 WEN Xiaorong12 GU Haibo1 ZHANG Zhengnan1 LIU Fangzhou3 ZHANG Yanli4 SUN Yuan12*
(1. College of Forestry, Nanjing Forestry University, Nanjing 210037,China; 2. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,China; 3. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037,China; 4. Arthur Temple College of Forestry and Agriculture, Stephen F.Austin State University, Nacogdoches, TX 75962, USA)
关键词:
林分结构 动态变化 地面激光雷达 材积模型 马褂木
Keywords:
stand structure dynamic change terrestrial laser scanner volume model Liriodendron chinense
分类号:
S758; TP79
摘要:
【目的】采用地面激光雷达(TLS)进行多站点扫描获取立木的点云信息,提取有关点云分布的特征参数,拓展立木测树因子,建立基于特征参数的材积模型。【方法】以马褂木(Liriodendron chinense)人工林为研究对象,利用点云数据提供的立木上部直径(d)、树高(H)等因子对两期(2014、2017年)林分结构变化进行分析; 设计并提取基于TLS点云的特征参数高度累计百分比,同时提取了其他与高度相关的特征参数作为一组变量; 将提取的立木胸径(DBH)与特征参数作为另一组变量; 最后分析特征参数、胸径与材积的相关性,通过逐步回归法分别建立基于两组变量的材积模型,并分析两期材积的动态变化。【结果】选用特征参数H25与Ht, var(点云高度方差)拟合两期材积模型,其决定系数R2分别为0.771 1、0.742 6; 利用特征参数H25与胸径拟合,模型预测精度有明显的提升。以上两组材积模型预测各径阶材积变化,其模型值与实测值无显著差异,R2均高于0.9。【结论】研究提取的高度累计百分比与立木测树因子紧密相关,可以很好地反演林木的动态结构。研究建立的材积模型均有较高的精度,可用于林木材积动态变化监测,为地面激光扫描点云参与森林资源动态监测提供理论参考。
Abstract:
【Objective】 The use of terrestrial laser scanner(TLS)in multistations to obtain the point cloud information of a standing tree, extracting the characteristic parameters of the point cloud distribution that expand the tree measurement factor, and establishing a volume model based on these characteristic parameters. 【Method】Liriodendron chinense plantation was studied, and the structural changes of the two stages(2014, 2017)were analyzed using the upper diameter(d)and tree height(H)of the standing tree provided by the point cloud data. The characteristic parameters of TLS point cloud named high cumulative percentage was designed and extracted, and other height-related feature parameters were extracted as a set of variables; the extracted DBH and feature parameters were considered as another set of variables; finally, the characteristic parameters were analyzed. The correlation between DBH and volume was established by stepwise regression method to build a volume model based on two sets of variables, and analyze the dynamic changes of the two phases. 【Result】The characteristic parameters H25 and Ht, var(point cloud height variance)were used to fit the two-stage volume model, and their R2 were 0.771 1 and 0.742 6, respectively. The accuracy of the model using the characteristic parameter H25 and the DBH improved. The two sets of volume models mentioned earlier were used to predict the volume change in each step; the model value and the measured value was not significantly different, and R2 is higher than 0.9. 【Conclusion】 The high cumulative percentage extracted in this study is closely related to the tree measurement factor, which can invert the dynamic structure of forest trees. The volume model developed by the research achieves high precision and can be used for the monitoring of the dynamic change in forest wood product, which provides a new reference for TLS point cloud to participate in the dynamic monitoring of forest resources.

参考文献/References:

[1] DONOGHUE D N M, WATT P J, COX N J, et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2007,110(4):509-522. DOI:10.1016/j.rse.2007.02.032. [2] SIMONSE M,ASCHOFF T,SPIECKER H,et al. Automatic determination of forest inventory parameters using terrestrial laser scanning[R]. Proceedings of the Scand Laser Scientific Workshop on Airborne Laser Scanning of Forests, 2003. [3] LIANG X L, HYYPPÄ J, KAARTINEN H, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,144:137-179. DOI:10.1016/j.isprsjprs.2018.06.021. [4] ERIKSON M,KARIN V. Finding tree-stems in laser range images of young mixed stands to perform selective cleaning[R]. Proceedings of the Scand Laser Scientific Workshop on Airborne Laser Scanning of Forests, 2003. [5] SUN Y, LIANG X L, LIANG Z Y, et al. Deriving merchantable volume in poplar through a localized tapering function from non-destructive terrestrial laser scanning[J]. Forests, 2016,7(12):87. DOI:10.3390/f7040087. [6] KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,75:64-75. DOI:10.1016/j.isprsjprs.2012.10.003. [7] ASTRUP R, DUCEY M J, GRANHUS A, et al. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode[J]. Canadian Journal of Forest Research, 2014,44(6): 666-676. DOI:10.1139/cjfr-2013-0535. [8] SRINIVASAN S, POPESCU S C, ERIKSSON M, et al. Multi-temporal terrestrial laser scanning formodeling tree biomass change[J]. Forest Ecology and Management,2014,318:304-317. DOI:10.1016/j.foreco.2014.01.038. [9] SEIDEL D, EHBRECHT M, PUETTMANN K. Assessing different components of three-dimensional forest structure with single-scan terrestrial laser scanning: a case study[J]. Forest Ecology and Management, 2016,381:196-208. DOI:10.1016/j.foreco.2016.09.036. [10] NESSET E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002,80(1):88-99. DOI:10.1016/s0034-4257(01)00290-5. [11] SILVA C A,KLAUBERG C,HUDAK A T, et al. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data[J]. Forestry, 2016,89(4): 422-433. DOI:10.1093/forestry/cpw016. [12] GRILLI E, MENNA F, REMONDINO F. A review of point clouds segmentation and classification algorithms[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017(2/3):339-344. DOI:10.5194/isprs-archives-xlii-2-w3-339-2017. [13] CHE E Z, OLSEN M J. Multi-scan segmentation of terrestrial laser scanning data based on normal variation analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,143: 233-248. DOI:10.1016/j.isprsjprs.2018.01.019. [14] MAGUYA A, TEGEL K, JUNTTILA V, et al. Moving voxel method for estimating canopy base height from airborne laser scanner data[J]. Remote Sensing, 2015,7(7): 8950-8972. DOI:10.3390/rs70708950. [15] 梁子瑜, 孙圆, 梁欣廉, 等. 基于地面激光扫描仪的树干削度方程提取[J]. 南京林业大学学报(自然科学版), 2014,38(5):6-10. DOI:10.3969/j.issn.1000-2006.2014.05.002. LIANG Z Y, SUN Y, LIANG X L, et al. The extraction of stem taper equation based on terrestrial laser scanning[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014,38(5):6-10. [16] LIU J B, LIANG X L, HYYPPÄ J, et al. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,56:13-23. DOI:10.1016/j.jag.2016.11.003. [17] 郝自远,李火根,康昊,等.北美鹅掌楸人工林生长规律及早期选择可行性探究[J]. 林业科学研究, 2017,30(5):878-885. DOI: 10.13275 /j.cnki.lykxyj.2017.05.023. HAO Z Y,LI H G,KANG H,et al. Growth pattern and early selection of Liriodendron tulipifera[J]. Forest Research, 2017,30(5):878-885. [18] 孟宪宇. 测树学[M].北京:中国林业出版社,2006. MENG X Y.Forest measuration [M]. Beijing:China Forestry Publishing House,2006. [19] 刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016,52(2):26-37. DOI:10.11707/j.1001-7488.20160204. LIU L X, PANG Y, LI Z Y. Individual tree DBH and height estimation using terrestrial laser scanning(TLS)in a subtropical forest[J]. Scientia Silvae Sinicae, 2016,52(2):26-37. [20] MCGAUGHE R J. FUSION/LDV: software for LIDAR data analysis and visualization[R]. USDA Forest Service. Pacific Northwest Research Station, 2007:28-30. [21] STARK S C, LEITOLD V, WU J L, et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment[J]. Ecology Letters, 2012,15(12): 1406-1414. DOI:10.1111/j.1461-0248.2012.01864.x. [22] 唐守正, 李勇, 符利勇.生物数学模型的统计基础[M].2版.北京:高等教育出版社,2015. TANG S Z,LI Y,FU L Y. Statistical foundation for biomathematical models[M]. 2nd ed. Beijing: Higher Education Press,2015. [23] 曹林, 佘光辉. 基于机载小光斑全波形LiDAR的亚热带林分特征反演[J]. 林业科学, 2015,51(6):81-92. DOI:10.11707/j.1001-7488.20150610. CAO L, SHE G H. Inversion of forest stand characteristics using small-footprint full-waveform airborne LiDAR in a subtropical forest[J]. Scientia Silvae Sinicae, 2015,51(6): 81-92. [24] DRAKE J B, DUBAYAH R O, KNOX R G, et al. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest[J]. Remote Sensing of Environment, 2002,81(2/3):378-392. DOI:10.1016/s0034-4257(02)00013-5. [25] HARDING D J, LEFSKY M A, PARKER G G, et al. Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests[J]. Remote Sensing of Environment, 2001,76(3):283-297. DOI:10.1016/s0034-4257(00)00210-8. [26] 刘强, 何彬生, 周永丽, 等. 鹅掌楸天然林生长特性研究[J]. 四川林业科技, 2016, 37(2): 12-17. LIU Q, HE B S, ZHOU Y L, et al. A study of the growth characteristics of natural Liriodendron chinense forest[J]. Journal of Sichuan Forestry Science and Technology, 2016,37(2): 12-17.

相似文献/References:

[1]朱跃韬,李建贵*,王健.阿尔泰山河谷林封育研究[J].南京林业大学学报(自然科学版),2011,35(03):015.[doi:10.3969/j.jssn.1000-2006.2011.03.016]
 ZHU Yuetao,LI Jiangui*,WANG Jian.Effects of enclosing forest in valley forest of Altai Mountain[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(06):015.[doi:10.3969/j.jssn.1000-2006.2011.03.016]
[2]彭方仁,郭彦青,朱小欢,等.杨树新梢萌发过程中贮藏蛋白质的动态变化[J].南京林业大学学报(自然科学版),2006,30(06):105.[doi:10.3969/j.jssn.1000-2006.2006.06.025]
 PENG Fang-ren,GUO Yan-qing,ZHU Xiao-huan,et al.The Dynamic Changes of Vegetative Storage Proteins in Poplar During the Course of Sprouting[J].Journal of Nanjing Forestry University(Natural Science Edition),2006,30(06):105.[doi:10.3969/j.jssn.1000-2006.2006.06.025]
[3]杨玉珍,郭彦青,彭方仁*.杨树枝叶中内源激素的变化及其与蛋白质代谢的关系[J].南京林业大学学报(自然科学版),2006,30(06):114.[doi:10.3969/j.jssn.1000-2006.2006.06.027]
 YANG Yu-zhen,GUO Yan-qing,PENG Fang-ren*.The Dynamic Changes of Some Endogenous Hormones and Its Relation to Proteins Metabolization in Leaf and Cortex of Poplar[J].Journal of Nanjing Forestry University(Natural Science Edition),2006,30(06):114.[doi:10.3969/j.jssn.1000-2006.2006.06.027]
[4]程晓义,林昌庚.雪岭云杉林分结构密度图的编制[J].南京林业大学学报(自然科学版),1988,12(01):019.[doi:10.3969/j.jssn.1000-2006.1988.01.003]
 Cheng Xiaoyi & Lin Changgeng.A STAND STRUCTURE DENSITY DIAGRAM FOR SCHRENK SPRUCE IN XINGJIANG[J].Journal of Nanjing Forestry University(Natural Science Edition),1988,12(06):019.[doi:10.3969/j.jssn.1000-2006.1988.01.003]
[5]彭方仁,黄宝龙,TayJuhana,等.椰子-菠萝复合系统的结构特征与生物生产力[J].南京林业大学学报(自然科学版),1996,20(01):068.[doi:10.3969/j.jssn.1000-2006.1996.01.016]
 Peng Fangren Huang Baolong (Nangjing Forestry University Nanjing 007)Tay Juhana Lim Nam.THE STRUCTURAL CHARACTERISTICS AND BIOMASS PRODUCTIVITY OF COCONUT-PINEAPPLE INTERPLANTATION[J].Journal of Nanjing Forestry University(Natural Science Edition),1996,20(06):068.[doi:10.3969/j.jssn.1000-2006.1996.01.016]
[6]周春国,佘光辉,吴富桢,等.用变型Weibull分布对热带雨林结构规律的研究[J].南京林业大学学报(自然科学版),1998,22(04):012.[doi:10.3969/j.jssn.1000-2006.1998.04.003]
 Zhou Chunguo She Guanghui Wu Fuzheng(Nanjing Forestry University Nanjing 007)Cheng Yongfu Yang Yancheng Wang Songling(Chinese Academy of Forestry )Yang Xiusen Li Dajiang.A STUDY ON THE TROPICAL RAIN FOREST STAND STRUCTUREWITH IMPROVED WEIBULL FUNCTION[J].Journal of Nanjing Forestry University(Natural Science Edition),1998,22(06):012.[doi:10.3969/j.jssn.1000-2006.1998.04.003]
[7]李春干.广西红树林资源的分布特点和林分结构特征[J].南京林业大学学报(自然科学版),2003,27(05):015.[doi:10.3969/j.jssn.1000-2006.2003.05.004]
 LI Chun gan.Distribution and Forest Structure of Mangrove in Guangxi[J].Journal of Nanjing Forestry University(Natural Science Edition),2003,27(06):015.[doi:10.3969/j.jssn.1000-2006.2003.05.004]
[8]夏 双,阮仁宗*,颜梅春,等.洪泽湖湿地的景观动态变化分析[J].南京林业大学学报(自然科学版),2013,37(04):179.[doi:10.3969/j.issn.1000-2006.2013.04.035]
 XIA Shuang,RUAN Renzong*,YAN Meichun,et al.Analysis of landscape dynamics in Hongze Lake wetlands[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(06):179.[doi:10.3969/j.issn.1000-2006.2013.04.035]
[9]吴初平,叶激华,张骏,等.松材线虫入侵后黑松林分结构特征的变化[J].南京林业大学学报(自然科学版),2013,37(05):081.[doi:10.3969/j.issn.1000-2006.2013.05.016]
 WU Chuping,YE Jihua,ZHANG Jun,et al.The variation of stand structure of Pinus thunbergii forest after theinvasion of Bursaphelenchus xylophilus[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(06):081.[doi:10.3969/j.issn.1000-2006.2013.05.016]
[10]王建军,孟京辉*.林分结构多样性参数与纹理信息相关分析中最优窗口的确定[J].南京林业大学学报(自然科学版),2017,41(03):112.[doi:10.3969/j.issn.1000-2006.201603008]
 WANG Jianjun,MENG Jinghui*.Determining optimal window size based on correlation between texture information and stand structural diversity indices[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(06):112.[doi:10.3969/j.issn.1000-2006.201603008]

备注/Memo

备注/Memo:
收稿日期:2019-01-17 修回日期:2019-06-05 基金项目:国家重点研发计划(2017YFD0600904); 中国博士后科学基金项目(2016M601822); 江苏高校优势学科建设工程资助项目(PAPD)。 第一作者:蒋佳文(1054191055@qq.com)。*通信作者:孙圆(sunyuan1123@126.com),副教授,博士后,ORCID(0000-0002-4595-9237)。
更新日期/Last Update: 2019-11-30