[1]贾炜玮,梁玉钊,李凤日*.落叶松人工林树皮厚度预测模型[J].南京林业大学学报(自然科学版),2019,43(06):097-104.
 JIA Weiwei,LIANG Yuzhao,LI Fengri*.Bark thickness prediction models for larch plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):097-104.
点击复制

落叶松人工林树皮厚度预测模型
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年06期
页码:
097-104
栏目:
研究论文
出版日期:
2019-11-25

文章信息/Info

Title:
Bark thickness prediction models for larch plantation
文章编号:
1000-2006(2019)06-0097-08
作者:
贾炜玮梁玉钊李凤日*
(东北林业大学林学院,黑龙江 哈尔滨 150040)
Author(s):
JIA Weiwei LIANG Yuzhao LI Fengri*
(College of Forestry, Northeast Forestry University, Harbin 150040, China)
关键词:
落叶松人工林 树皮因子 树皮厚度 线性混合模型 预测模型 圆盘
Keywords:
larch plantation bark factor bark thickness linear mixed model the prediction model disk of larch tree
分类号:
S758
摘要:
【目的】建立落叶松人工林树皮因子及任意高度处树皮厚度的预测模型,以期更加准确地对树皮厚度进行预测,为实际木材生产和森林经营提供更加准确的指导。【方法】基于2015年黑龙江省佳木斯市孟家岗林场49株人工落叶松的1 186个圆盘数据,利用SAS 9.4软件中的MIXED模块构建落叶松人工林树皮厚度(树皮因子、任意高度处树皮厚度)的线性混合效应预测模型。模型评价指标选用赤池信息准则(AIC)、贝叶斯信息准则(BIC)、-2倍的对数似然值(-2LL)及似然比检验(LRT)。【结果】对于树皮因子模型,基于树木效应时含b1、b2、b4随机参数组合的树皮因子模型为最优混合模型; 基于样地效应时含b1、b2随机参数组合的模型是最优混合效应模型。对于任意高度处树皮厚度模型,基于树木效应时含b1、b2的组合为最优混合模型; 基于样地效应时含b0、b2、b3组合的为最优模型。所有最优模型在具有无结构(UN)方差-协方差矩阵时拟合效果最好。【结论】不论是树皮因子还是树皮厚度模型,树木效应对模型的影响最大; 混合效应模型的预估精度与传统回归模型相比有明显提高。
Abstract:
【Objective】The prediction model of bark factor and bark thickness at any height of larch plantation was established in order to predict bark thickness more accurately and provide more accurate prediction model and guidance for actual wood production and forest management.【Method】Based on 1 186 disk data of 49 artificial larch trees in Mengjiagang Forest Farm of Jiamusi City, Heilongjiang Province in 2015, the bark thickness(bark factor, bark thickness at any height)of larch plantation linear mixed effects prediction model was constructed using the MIXED module in SAS 9.4 software. The model evaluation indicators were Akaike Information Criterion(AIC), Bayesian Information Criterion(BIC), -2 log likelihood(-2LL)and likelihood ratio test(LRT). 【Result】For the bark factor model, the bark factor model with b1,b2, b4 and random parameter combination is the optimal mixed model based on the tree effect, and the model with b1, b2 random parameter combination is the optimal model based on the plot effect. For the bark thickness model at any height, the combination of b1, b2 is the optimal mixed model based on the tree effect, and the combination of b0,b2,b3 is the optimal model based on the plot effect. All the optimal models have the best fitting effect when they have unstructured(UN)variance-covariance matrix. 【Conclusion】The tree effect has the greatest influence on the model whether it is the bark factor or the bark thickness model. The prediction accuracy of the mixed-effect model is significantly improved compared with the traditional regression model.

参考文献/References:

[1] HEATH L S, HANSEN M H, SMITH J E, et al. Investigation into calculating tree biomass and carbon in the FIADB using a biomass expansion factor approach[C]//USDA Forest Service Rocky Mountain Research Station, 2009. [2] 孟宪宇. 测树学[M]. 北京:中国林业出版社, 2006. MENG X Y. Tree survey[M]. Beijing: China Forestry Publishing House,2006. [3] GROSENBAUGH L R. STX-Fortran-4 program for estimates of tree populations from 3P sample-tree-measurements[R]. USDA Forest Serv Res Pap Psw, 1967. [4] LAASASENAHO J, MELKAS T, ALDÉN S. Modelling bark thickness of Picea abies with taper curves[J]. Forest Ecology and Management, 2005, 206(1/2/3): 35-47. DOI:10.1016/j.foreco.2004.10.058 [5] MAX T, BURKHART H. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976, 22(3): 283-289. [6] MALONE T, LIANG J J. A bark thickness model for white spruce in Alaska northern forests[J]. International Journal of Forestry Research, 2009: 1-5. DOI:10.1155/2009/876965. [7] KOZAK A, YANG R C. Equations for estimating bark volume and thickness of commercial trees in British Columbia[J]. The Forestry Chronicle, 1981, 57(3): 112-115. DOI:10.5558/tfc57112-3 [8] COURBET F, HOULLIER F. Modelling the profile and internal structureof tree stem. application to Cedrus atlantica(Manetti)[J]. Annals of Forest Science, 2002, 59(1): 63-80. DOI:10.1051/forest:2001006. [9] LI R X, WEISKITTEL A R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies[J]. European Journal of Forest Research, 2011, 130(2): 219-233. DOI:10.1007/s10342-010-0423-y. [10] 王晓林, 蔡可旺, 姜立春. 落叶松树皮厚度变化规律的研究[J]. 森林工程, 2011, 27(2): 8-11. DOI:10.16270/j.cnki.slgc.2011.02.022. WANG X L, CAI K W, JIANG L C. Study on bark thickness of dahurian larch[J]. Forest Engineering, 2011, 27(2): 8-11. [11] 王君山, 闫菁. 树皮厚度和树皮系数变化规律的研究[J]. 河北林果研究, 2011, 26(3): 235-237. WANG J S, YAN J. Rules of bark thickness and bark coefficient[J]. Hebei Journal of Forestry and Orchard Research, 2011, 26(3): 235-237. [12] 郭孝玉, 孙玉军, 马炜, 等. 适于FVS的长白落叶松树皮因子[J]. 东北林业大学学报, 2011, 39(10): 28-31. DOI:10.13759/j.cnki.dlxb.2011.10.037. GUO X Y, SUN Y J, MA W, et al. Bark factor of Larix olgensis suitable for forest vegetation simulator[J]. Journal of Northeast Forestry University, 2011, 39(10): 28-31. [13] FANG Z,BALEY R L.Nonlinear mixed effects modeling for slash pine dominant height growth following intensive sil-vicultural treatments[J].Forest Science,2001,47:287-300. [14] JIANG L C, DU S L, LI F R. Simulation of Larix gmelinii tree volume growth based on random effect[J]. The Journal of Applied Ecology, 2011, 22(11): 2963-2969. [15] CALEGARIO N, DANIELS R F, MAESTRI R, et al. Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study[J]. Forest Ecology and Management, 2005, 204(1): 11-21. DOI:10.1016/j.foreco.2004.07.051 [16] 姜立春, 刘瑞龙. 基于非线性混合模型的落叶松树干削度模型[J]. 林业科学, 2011, 47(4): 101-106. JIANG L C, LIU R L. A stem taper model with nonlinear mixed effects for dahurian larch[J]. Scientia Silvae Sinicae, 2011, 47(4): 101-106. [17] GROOM J D, HANN D W, TEMESGEN H. Evaluation of mixed-effects models for predicting Douglas-fir mortality[J]. Forest Ecology and Management, 2012, 276: 139-145. DOI:10.1016/j.foreco.2012.03.029. [18] JIANG L C, ZHANG R, LI F R. Modeling branch length and branch angle with linear mixed effects for dahurian larch[J]. Forestry Science and Technology, 2012, 11(3): 57. [19] HEIN S, MÄKINEN H, YUE C F, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242(2/3): 155-164. DOI:10.1016/j.foreco.2007.01.014.

相似文献/References:

[1]屈红军,牟长城,李婉姝.落叶松人工林群落结构特征及自然化经营[J].南京林业大学学报(自然科学版),2010,34(04):153.[doi:10.3969/j.jssn.1000-2006.2010.04.033]
 QU Hong jun,MU Chang cheng,LI Wan shu.A study on the naturalization and community structure characteristics of Larix gmelinii plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(06):153.[doi:10.3969/j.jssn.1000-2006.2010.04.033]
[2]邓文平,李凤日*.基于极值理论的落叶松人工林自稀疏线估计[J].南京林业大学学报(自然科学版),2014,38(05):011.[doi:10.3969/j.issn.1000-2006.2014.05.003]
 DENG Wenping,LI Fengri*.Estimation of self-thinning line for larch plantation based on extreme values[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(06):011.[doi:10.3969/j.issn.1000-2006.2014.05.003]
[3]陈东升,孙晓梅*,李凤日.落叶松人工林枝条直径和长度的非线性混合模型[J].南京林业大学学报(自然科学版),2015,39(06):074.[doi:10.3969/j.issn.1000-2006.2015.06.014]
 CHEN Dongsheng,SUN Xiaomei*,LI Fengri.Nonlinear mixed models of branch diameter and length in larch plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2015,39(06):074.[doi:10.3969/j.issn.1000-2006.2015.06.014]

备注/Memo

备注/Memo:
收稿日期:2018-10-15 修回日期:2019-04-21 基金项目:国家重点研发计划(2017YFD0600404-21)。 第一作者:贾炜玮(JIAWW2002@163.com),副教授,博士,*通信作者:李凤日(fengrili@126.com),教授,博士。ORCID(0000-0002-4058-769X)。
更新日期/Last Update: 2019-11-30