[1]陈禹衡,吕一维,殷晓洁*.气候变化下西南地区12种常见针叶树种适宜分布区预测[J].南京林业大学学报(自然科学版),2019,43(06):113-120.
 CHEN Yuheng,L Yiwei,YIN Xiaojie*.Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):113-120.
点击复制

气候变化下西南地区12种常见针叶树种适宜分布区预测
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年06期
页码:
113-120
栏目:
研究论文
出版日期:
2019-11-25

文章信息/Info

Title:
Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change
文章编号:
1000-2006(2019)06-0113-08
作者:
陈禹衡1吕一维2殷晓洁1*
(1.西南林业大学林学院,云南 昆明 650224; 2.东北林业大学林学院,黑龙江 哈尔滨 150040)
Author(s):
CHEN Yuheng1 LÜ Yiwei2 YIN Xiaojie1*
(1. College of Forestry, Southwest Forestry University, Kunming 650224, China; 2. School of Forestry, Northeast Forestry University, Harbin 150040, China)
关键词:
针叶树 适宜分布区 气候变化 MaxEnt模型 西南地区
Keywords:
coniferous tree ecological suitable area climate change MaxEnt model southwest China
分类号:
Q948.5; S718
摘要:
【目的】随气候变化加剧,未来西南地区针叶林分布存在诸多不确定性,进行未来气候下西南地区常见针叶树种适宜分布区研究,为该地区森林生态安全评估提供参考。【方法】基于最大熵模型(MaxEnt)模拟未来气候情景下西南地区常见的12种针叶树的气候适宜分布区。【结果】MaxEnt模型能够很好地模拟西南地区12个树种的潜在分布,AUC值均达0.9以上; 2070年MPI-ESM-LR模式RCP4.5情景下西南地区12种常见针叶树种气候适宜区面积分布变化显著,包括冷杉、三尖杉、杉木、干香柏、柏木、水杉、云南松、红豆杉和福建柏在内的9个树种气候适宜区与气候最适区面积增加11.1%~412.8%; 银杉和油麦吊云杉的气候适宜区面积分别增加6.0%和32.8%,但气候最适区面积减少了0.8%和3.5%; 云南油杉未来气候适宜区和气候最适区的面积则减少24.0%和29.1%。【结论】西南地区针叶林中广布树种的气候适宜区面积会得益于气候变化而扩大,但云南油杉和油麦吊云杉等一些西南特有乡土树种的气候适宜区面积则会因为气候变化而缩小,因此对特有乡土树种的保护应给予重视。
Abstract:
【Objective】Coniferous forests in southwest China are important biodiversity hotspots, but they are under significant threat from ongoing climatic changes. In this study we explored the predicted changes in habitat suitability for 12 key tree species.【Method】We used MaxEnt models to predict habitat suitability for 12 coniferous tree species that are currently present in southwest China. 【Result】The AUC values(receiver operating characteristics, area under curve)of all 12 species were more than 0.9, suggesting our results are highly supported. We found that the climatically suitable area of all species under representative concentration pathways scenario 4.5 in 2070 will increase greatly. For 9 of the 12 species(Abies fabri, Cephalotaxus fortunei, Cunninghamia lanceolata, Cupressus duclouxiana, Metasequoia glyptostroboides, Pinus yunnanensis, Fokienia hodginsii, Taxus wallichiana var. chinensis and Cupressus funebris), both the total climatically suitable area and the area of optimal climate will increase 11.1% and 412.8% than the current areal, respectively. For Picea brachytyla and Cathaya argyrophylla, the total climatically suitable area will increase by 6.0% and 32.8%, respectively, but the area of optimal conditions will decrease( P. brachytyla by -0.8%; C. argyrophylla by -3.5%). However, for Keteleeria evelyniana, both the total climatically suitable area and the area of optimal climate area will respectively decrease by 24.0% and 29.1%.【Conclusion】Overall, our models show that climate change is expected to increase the range of various widely distributed coniferous tree species. However, for specialized coniferous species like Picea brachytyla and Keteleeria evelyniana, there will be a range decrease as conditions change. We suggest that more attention be paid to specialized forest conifer species, particularly in relation to expected climatic changes.

参考文献/References:

[1] 冯建孟, 董晓东, 徐成东,等. 取样尺度效应对滇西北地区种子植物物种多样性纬度分布格局的影响[J]. 生物多样性, 2009, 17(3):266-271. DOI:10.3724/SP.J.1003.2009.08265. FENG J M, DONG X D, XU C D, et al. Effects of sampling scale on latitudinal patterns of species diversity in seed plants in northwestern Yunnan, China[J]. Biodiversity Science, 2009, 17(3):266-271. [2] 杨庆媛. 西南丘陵山地区土地整理与区域生态安全研究[J]. 地理研究, 2003, 22(6):698-708. DOI:10.3321/j.issn:1000-0585.2003.06.004. YANG Q Y. A study on the issue of land consolidation and eco-security in hilly and mountainous regions of southwest China[J]. Geographical Research, 2003, 22(6): 698-708. [3] FINLAYSON M, CRUZ R D, DAVIDSON N, et al. Millennium ecosystem assessment: ecosystems and human well-being: wetlands and water synthesis[R]. Washington DC: World Resources Institute, 2005. [4] KERR R A. A stronger IPCC report[J]. Science, 2013, 342(6154):23. DOI:10.1126/science.342.6154.23-b. [5] Vié JEAN C, HILTON T C, STUART S N. Wildlife in a changing world: an analysis of the 2008 IUCN red list of threatened species[R]. Switzerland: International Union for Conservation of Nature, 2009. [6] 刘国华. 西南生态安全格局形成机制及演变机理[J]. 生态学报, 2016, 36(22):7088-7091.DOI: 10.5846/stxb201611212364. LIU G H. Formation and evolution mechanism of ecological security pattern in southwest China[J]. Acta Ecologica Sinica, 2016, 36(22):7088-7091. [7] 杨志香, 周广胜, 殷晓洁,等. 中国兴安落叶松天然林地理分布及其气候适宜性[J]. 生态学杂志, 2014, 33(6):1429-1436. DOI:10.13292/j. 1000-4890.2014.0122. YANG Z X, ZHOU G S, YIN X J, et al. Geographic distribution of Larix gmelinii natural forest in China and its climatic suitability[J]. Chinese Journal of Ecology, 2014, 33(6): 1429-1436. [8] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1):10-19. DOI:10.12006/j.issn,1673-1719.2015.113. ZHANG Y W, ZHANG L, XU Y. Simulations and projections of the surface air temperature in China by CMIP5 models[J]. Climate Change Research, 2016, 12(1): 10-19. [9] 初祁, 徐宗学, 刘文丰,等. 24个CMIP5模式对长江流域模拟能力评估[J]. 长江流域资源与环境, 2015, 24(1):81-89. DOI:10.11870/cjlyzyyhj201501011. CHU Q, XU Z X, LIU W F, et al. Assessment on 24 global climate models in the CMIP5 over the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2015, 24(1):81-89. [10] PHILLIPS S J, DUDÍK M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161-175. DOI:10.1111/j.0906-7590.2008.5203.x. [11] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259. DOI:10.1016/j.ecolmodel.2005.03.026. [12] 唐继洪, 程云霞, 罗礼智, 等. 基于MaxEnt模型的不同气候变化情景下我国草地螟越冬区预测[J]. 生态学报, 2017, 37(14): 4852-4863.DOI:10.5846/stxb201604040608. TANG J H,CHENG Y X, LUO L Z, et al. MaxEnt-based prediction of overwintering areas of Loxostege sticticalis in China under different climate change scenarios[J]. Acta Ecologica Sinica, 2017, 37(14): 4852-4863. [13] 殷晓洁, 周广胜, 隋兴华, 等. 辽东栎林潜在地理分布及其主导因子[J]. 林业科学, 2013, 49(8): 10-14. DOI: 10.11707/j.1001-7488.20130802. YIN X J, ZHOU G S, SUI X H, et al. Potential geographical distribution of Quercus wutaishanica forest and its dominant factors[J]. Scientia Silvae Sinicae, 2013, 49(8): 10-14. [14] 韩阳阳, 王焱, 项杨,等. 基于MaxEnt生态位模型的松材线虫在中国的适生区预测分析[J]. 南京林业大学学报(自然科学版), 2015, 39(1):6-10.DOI: 10.3969/j.issn.1000-2006.2015.01.001. HAN Y Y, WANG Y, XIANG Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on MaxEnt ecological niche model[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(1): 6-10. [15] 王雷宏, 杨俊仙, 徐小牛. 基于MaxEnt分析金钱松适生的生物气候特征[J]. 林业科学, 2015, 51(1):127-131. DOI: 10.11707/j.1001-7488.20150115. WANG L H, YANG J X, XU X N. Analysis of suitable bioclimatic characteristics of Pseudolarix amabilis by using MaxEnt model[J]. Scientia Silvae Sinicae, 2015, 51(1): 127-131. [16] 马松梅, 张明理, 张宏祥,等. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11):1327-1335. DOI: 10.3773/j.issn.1005-264x.2010.11.010. MA S M, ZHANG M L, ZHANG H X, et al. Predicting potential geographical distributions and patterns of the relic plant Gymnocarpos przewalskii using Maximum Entropy and genetic algorithm for rule-set prediction[J]. Chinese Journal of Plant Ecology, 2010, 34(11): 1327-1335. [17] 王伟, 田荣荣, 那立妍, 等. 基于MaxEnt生态软件划分澳洲坚果的潜在地理适生区[J]. 林业科学研究, 2017, 30(3): 444-449. DOI:10.13275/j.cnki.lykxyj.2017.03.012. WANG W, TIAN R R, NA L Y, et al. Predicting potential geographic suitable regions of Macadamia integrifolia based on MaxEnt[J]. Forest Research, 2017, 30(3): 444-449. [18] DOWLING. Using MaxEnt modeling to predict habitat of mountain pine beetle in response to climate change[D]. Los Angeles: University of Southern California, 2015. [19] 王运生, 谢丙炎, 万方浩,等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4):365-372. DOI:10.3321/j.issn:1005-0094.2007.04.005. WANG Y S, XIE B Y,WANG F H, et al. Application of ROC curve analysis in evaluating the performance of alien species' potential distribution models[J]. Biodiversity Science, 2007, 15(4):365-372. [20] 李灿, 刘贤安, 王娟, 等. 基于MaxEnt的四川省红豆杉潜在分布区分析及适宜性评价[J]. 四川林业科技, 2017, 38(5): 1-7, 32. DOI:10.16779/j.cnki.1003-5508.2017.05.001. LI C, LIU X A, WANG J, et al. Predictive distribution and habitat suitability assessment of Taxus chinensis based on MaxEnt in Sichuan Province[J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(5): 1-7, 32. [21] GARCIA K, LASCO R, INES A, et al. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines[J]. Applied Geography, 2013, 44: 12-22. DOI:10.1016/j.apgeog.2013.07.005. [22] 麻亚鸿. 基于最大熵模型(MaxEnt)和地理信息系统(ArcGis)预测藓类植物的地理分布范围——以广西花坪自然保护区为列[D]. 上海: 上海师范大学, 2013. MA Y H. Applying MaxEnt and ArcGIS to predict mosses geographic distribution range: a case study of Huaping Nature Reserve, Guangxi[D]. Shanghai: Shanghai Normal University, 2013. [23] 张东方, 张琴, 郭杰,等. 基于MaxEnt模型的当归全球生态适宜区和生态特征研究[J]. 生态学报, 2017,37(15):5111-5120. DOI: 10.5846/stxb201605030837 ZHANG D F, ZHANG Q, GUO J, et al. Research on the global ecological suitability and characteristics of regions with Angelica sinensis based on the MaxEnt model[J]. Acta Ecologica Sinica, 2017, 37(15): 5111-5120. [24] 唐继洪, 程云霞, 罗礼智,等. 基于Maxent模型的不同气候变化情景下我国草地螟越冬区预测[J]. 生态学报, 2017, 37(14):4852-4863. DOI:10.5846/stxb201604040608. TANG J H, CHENG Y X, LUO L Z, et al. MaxEnt-based prediction of overwintering areas of Loxostege sticticalis in China under different climate change scenarios[J]. Acta Ecologica Sinica, 2017, 37(14): 4852-4863. [25] BRADLEY E. The Jackknife, the Bootstrap and other resampling plans[J]. Siam Monograph, 1982, 38(384). DOI:10.1137/1.9781611970319. [26] 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4):25-29. DOI:10.3969/j.issn.1000-2006.201608010. LIU Q L, LI Y, FANG S Z. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(4): 25-29. [27] WILSON C D, ROBERTS D, REID N. Applying species distribution modelling to identify areas of high conservation value for endangered species: a case study using Margaritifera margaritifera(L.)[J]. Biological Conservation, 2011, 144(2): 821-829. DOI:10.1016/j.biocon.2010.11.014. [28] WEBER T C. Maximum entropy modeling of mature hardwood forest distribution in four US states[J]. Forest Ecology and Management, 2011, 261(3): 779-788. DOI:10.1016/j.foreco.2010.12.009. [29] 郭樑, 李莲芳, 孙昂, 等. 水分对云南松苗木生长的影响[J]. 种子, 2014, 33(6): 64-68. DOI:10.16590/j.cnki.1001-4705.2014.06.083. GUO L, LI L F, SUN A, et al. Effect of the moisture on seedling growth of Pinus yunnanensis[J]. Seed, 2014, 33(6): 64-68. [30] KAESLIN E, REDMOND I, DUDLEY N. Wildlife in a changing climate[R]. Washington DC: Food and Agriculture Organization of the United Nations, 2012.

相似文献/References:

[1]谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方四种针叶树幼苗水分参数的测定[J].南京林业大学学报(自然科学版),1999,23(01):041.[doi:10.3969/j.jssn.1000-2006.1999.01.010]
 Xie Yinfeng Shen Huijuan Luo Aizhen.A Study on Water Parameter of Seedlings of Four Conifer Speciesin the South of China under Water Stress[J].Journal of Nanjing Forestry University(Natural Science Edition),1999,23(06):041.[doi:10.3969/j.jssn.1000-2006.1999.01.010]

备注/Memo

备注/Memo:
收稿日期:2018-08-24 修回日期:2019-09-08 基金项目:国家自然科学基金项目(31700467); 云南省高校优势特色重点学科(生态学)建设项目。 第一作者:陈禹衡(edenchen1226@outlook.com)。*通信作者:殷晓洁(xjyinanne@163.com),讲师,ORCID(0000-0003-1421-0112)。
更新日期/Last Update: 2019-11-30