[1]殷 琪,秦文其,刘婷婷,等.团花树NcIRX9基因在木聚糖生物合成中的功能保守性[J].南京林业大学学报(自然科学版),2019,43(06):129-136.
 YIN Qi,QIN Wenqi,LIU Tingting,et al.Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):129-136.
点击复制

团花树NcIRX9基因在木聚糖生物合成中的功能保守性
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
43
期数:
2019年06期
页码:
129-136
栏目:
研究论文
出版日期:
2019-11-25

文章信息/Info

Title:
Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis
文章编号:
1000-2006(2019)06-0129-08
作者:
殷 琪秦文其刘婷婷康 璐吴蔼民*邓小梅*
(华南农业大学林学与风景园林学院,广东 广州 510642)
Author(s):
YIN Qi QIN Wenqi LIU Tingting KANG Lu WU Aimin* DENG Xiaomei*
(College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China)
关键词:
团花树 木聚糖 NcIRX9 基因功能 生物质能源
Keywords:
Neolamarckia cadamba xylan NcIRX9 gene function biomass energy
分类号:
Q71
摘要:
【目的】木聚糖是双子叶植物中次生壁半纤维素的主要成分,在维持植物次生壁的完整性和植物生长方面有重要作用。在木本植物中,木聚糖对木材性质和生物质能源的利用有重要影响。本研究探索我国南方速生树种团花树NcIRX9基因及其在木聚糖合成中的功能。【方法】结合生物信息学方法,分析团花树NcIRX9亲缘关系和蛋白质结构; 构建 YFP( 黄色荧光蛋白)融合蛋白,观察其亚细胞定位; 通过qRT-PCR分析团花树NcIRX9基因的表达特性及组织特异性; 通过切片显微观察、化学免疫、单糖分析及H1-NMR分析团花树NcIRX9基因在拟南芥突变体irx9体内的功能。【结果】团花树NcIRX9在进化上保守,其N端存在一个信号肽,定位于高尔基体内,与拟南芥AtIRX9密切相关。NcIRX9基因在根、茎、叶、木质部、韧皮部均有表达,且在木质部中的表达量较高。互补分析表明NcIRX9能部分互补拟南芥突变体irx9表型,是AtIRX9的直系同源基因。此外,本研究还表明在拟南芥突变体irx9过度表达NcIRX9木糖含量升高,侧链信号增强,与此同时还原末端侧链信号增强。【结论】团花树NcIRX9基因行使与拟南芥AtIRX9相似的生物学功能,与木聚糖的合成密切相关。
Abstract:
【Objective】Xylan is the major component of secondary wall hemicellulose in dicot plants and plays an indispensable role in maintaining plant secondary wall integrity and plant growth. Xylan also greatly impacts wood properties and biomass energy. The study described here explores the IRX9 gene of Neolamarckia cadamba, a fast-growing tree species in southern China. Furthermore, the role of NcIRX9 in xylan biosynthesis is also explored. 【Method】 Bioinformatics was used to analyze NcIRX9 protein structure. A yellow fluorescent protein(YFP)fusion protein was constructed NcIRX9, and its subcellular localization was observed. Both NcIRX9 expression in different tissues were analyzed by qRT-PCR. In addition, by tissue sectioning and microscopic observation, chemical immunization, monosaccharide analysis, and H1-NMR analysis, we verified the function of NcIRX9. NcIRX9 function was further validated in a mutant Arabidopsis model. 【Result】 NcIRX9 is evolutionarily conserved and contains a signal peptide at its N-terminus, closely related to Arabidopsis AtIRX9, which is located in the Golgi. The NcIRX9 gene is expressed in the roots, stems, leaves, xylem and phloem, with its highest level of expression in the xylem. We determined that NcIRX9 can partially rescue the Arabidopsis mutant irx9 phenotype, as it is orthologous to AtIRX9. Moreover, this study also demonstrated that overexpression of NcIRX9 in Arabidopsis irx9 mutants increases xylose content, side chain signal enhancement, and reduces the end side chain signal enhancement. 【Conclusion】 The biological function of the NcIRX9 gene in Neolamarckia cadamba is similar to that of Arabidopsis AtIRX9 and is highly involved in xylan biosynthesis.

参考文献/References:

[1] 罗献瑞. 中国植物志[M]. 北京: 科学出版社, 1999: 261. LUO X R. Flora of China [M].Beijing: Science Press, 1999:261. [2] 邓小梅, 欧阳昆唏, 张倩, 等. 团花研究现状及发展思考[J]. 中南林业科技大学学报, 2011, 31(11): 90-95. DOI:10.14067/j.cnki.1673-923x.2011.11.032. DENG X M, OUYANG K X, ZHANG Q, et al. Research status and development thinking of Neolamarckia cadamba[J]. Journal of Central South University of Forestry & Technology, 2011, 31(11): 90-95. [3] 郑万钧. 中国树木志[M]. 北京:中国林业出版社, 2004: 4594-4595. ZHENG W J. Chinese tree records[M]. Beijing: China Forestry Publishing House,2004: 4594-4595. [4] 苏光荣, 易国南, 杨清. 团花生长特性研究[J]. 西北林学院学报, 2007, 22(5): 49-52. DOI:10.3969/j.issn.1001-7461.2007.05.012. SU G R, YI G N, YANG Q. A study on the growth character of anthocephalus chinensis[J]. Journal ofNorthwest Forestry University, 2007, 22(5): 49-52. [5] SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61(1): 263-289. DOI:10.1146/annurev-arplant-042809-112315. [6] PAULY M, GILLE S, LIU L F, et al. Hemicellulose biosynthesis[J]. Planta, 2013, 238(4): 627-642. DOI:10.1007/s00425-013-1921-1. [7] MELLEROWICZ E J, GORSHKOVA T A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition[J]. Journal of Experimental Botany, 2012, 63(2): 551-565. DOI:org/10.1093/jxb/err339. [8] NIMZ H H, SCHMITT U, SCHWAB E, et al. Ullmann's encyclopedia of industrial chemistry[M]. NewYork: Wiley, 2000. [9] YORK W, ONEILL M. Biochemical control of xylan biosynthesis: which end is up?[J]. Current Opinion in Plant Biology, 2008, 11(3): 258-265. DOI:10.1016/j.pbi.2008.02.007. [10] FAIK A. Xylan biosynthesis: news from the grass[J].Plant Physiology, 2010, 153(2): 396-402.DOI:10.1104.pp.110.154237. [11] 吴蔼民, 赵先海, 解巧丽, 等. 葡萄糖醛酸木聚糖生物合成研究进展[J]. 华南农业大学学报, 2015, 36(4): 1-10.DOI:10.7671/j.issn.1001-411X.2015.04.001. WU A M, ZHAO X H, XIE Q L, et al. Research progress in glucuronoxylan biosynthesis[J]. Journal of South China Agricultural University, 2015, 36(4): 1-10. [12] GILLE S, PAULY M. O-acetylation of plant cell wall polysaccharides[J]. Frontiers in Plant Science, 2012, 3: 12. DOI:10.3389/fpls.2012.00012. [13] MORTIMER J C, MILES G P, BROWN D M, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(40):17409-17414. DOI: 10.1073/pnas.1005456107. [14] PETERSEN P D, LAU J, EBERT B, et al. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants[J]. Biotechnology for Biofuels, 2012, 5(1): 84. DOI:10.1186/1754-6834-5-84. [15] WU A M, HÖRNBLAD E, VOXEUR A, et al. Analysis of the Arabidopsis /-and /-Pairs of Glycosyltransferase genes reveals critical contributions to biosynthesis of the Hemicellulose Glucuronoxylan[J]. Plant Physiology,2010, 153(2): 542-554.DOI:10.1104/pp.110.154971. [16] WU A M, RIHOUEY C, SEVENO M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation[J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4): 718-731. DOI:10.1111/j.1365-313X.2008.03724. [17] TURNER R, SOMERVILLE R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5): 689-701. DOI:10.1105/tpc.9.5.689. [18] BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8): 2281-2295. DOI:10.1105/tpc.105.031542. [19] ZHONG R Q, PEÑA M J, ZHOU G K, et al. Arabidopsis fragile fiber 8, which encodes a putative glucuronyl transferase, is essential for normal secondary wall synthesis[J]. The Plant Cell, 2005, 17(12): 3390-3408. DOI:10.1105/tpc.105.035501. [20] PERSSON S, WEI H R, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2005, 102(24): 8633-8638.DOI: 10.1073/pnas.0503392102. [21] CARROLL A, SOMERVILLE C. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60(1): 165-182. DOI:10.1146/annurev.arplant.043008.092125. [22] YANG B, WYMAN C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1): 88-95. DOI:10.1002/bit.20043. [23] BROWN D M, ZHANG Z N, STEPHENS E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis[J]. The Plant Journal, 2009, 57(4): 732-746. DOI:10.1111/j.1365-313x.2008.03729.x. [24] BROWN D M, GOUBET F, WONG V W, et al. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis[J]. The Plant Journal, 2007, 52(6): 1154-1168. DOI:10.1111/j.1365-313x.2007.03307. [25] LEE C, TENG Q, HUANG W L, et al. The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology, 2010, 153(2): 526-541. DOI:10.1104/pp.110.155309. [26] JENSEN J K, JOHNSON N R, WILKERSON C G. Arabidopsis thaliana IRX10 and two related proteins from psyllium andPhyscomitrella patensare xylan xylosyltransferases[J]. The Plant Journal, 2014, 80(2): 207-215. DOI:10.1111/tpj.12641. [27] LEE C, O'NEILL M A, TSUMURAYA Y, et al. The irregular xylem 9 mutant is deficient in xylan xylosyltransferase activity[J]. Plant and Cell Physiology, 2007, 48(11): 1624-1634. DOI:10.1093/pcp/pcm135. [28] PEÑA M J, ZHONG R Q, ZHOU G K, et al. Arabidopsis irregular xylem 8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynthesis[J]. The Plant Cell, 2007, 19(2): 549-563. DOI:10.1105/tpc.106.049320. [29] LI L, HUANG J F, QIN L X, et al. Two Cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development[J]. Physiologia Plantarum, 2014, 152(2): 367-379. DOI:10.1111/ppl.12190. [30] CHINIQUY D,VARANASI P, OH T, et al. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynthesis[J]. Frontiers in Plant Science, 2013, 4: 83. DOI:10.3389/fpls.2013.00083. [31] RATKE C, PAWAR P M A, BALASUBRAMANIAN V K, et al. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification[J]. Plant Biotechnology Journal, 2015, 13(1): 26-37. DOI:10.1111/pbi.12232. [32] WEI Z, LAMPUGNANI E R, PICARD K L, et al. Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus[J]. Plant Physiology, 2016, 171(1): 93-109.DOI:10.1104/pp.15.0191. [33] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12): 2725-2729. DOI:10.1093/molbev/mst197. [34] HÖRNBLAD E, ULFSTEDT M, RONNE H, et al. Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants[J]. BMC Plant Biology, 2013, 13(1): 3. DOI:10.1186/1471-2229-13-3. [35] TAUJALE R, YIN Y B. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in charophycean green algae[J]. PLoS One, 2015, 10(5): e0128409. DOI:10.1371/journal.pone.0128409.

相似文献/References:

[1]欧阳嘉,谢承佳,李双,等.福寿螺糖苷水解酶基因核心片断的克隆及序列分析[J].南京林业大学学报(自然科学版),2006,30(02):029.[doi:10.3969/j.jssn.1000-2006.2006.02.007]
 OUYANG Jia,XIE Cheng-jia,LI Shuang,et al.Cloning and Sequencing of a Molluscan Glycosyl Hydrolase Core Gene from the Snail, Ampullaria crossean[J].Journal of Nanjing Forestry University(Natural Science Edition),2006,30(06):029.[doi:10.3969/j.jssn.1000-2006.2006.02.007]

备注/Memo

备注/Memo:
收稿日期:2019-06-20 修回日期:2019-08-06 基金项目:国家自然科学基金项目(31670601)。 第一作者:殷琪(yinqiyinqi216@163.com)。*通信作者:吴蔼民(wuaimin@scau.edu.cn ),教授,负责指导项目的具体实施,ORCID(0000-0001-8322-8833); 邓小梅(dxmei2006@scau.edu.cn),教授,负责论文框架设定与修改,ORCID(0000-0001-8017-8906)。
更新日期/Last Update: 2019-11-30