LIAO Yangwenke,CUI Rongrong,XIE Yinfeng.The role of β-cyanoalanin synthase in polar leaves under salt stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):137-142.





The role of β-cyanoalanin synthase in polar leaves under salt stress
(1. 南京林业大学,南方现代林业协同创新中心,江苏 南京 210037; 2. 南京林业大学生物与环境学院,江苏 南京 210037)
LIAO Yangwenke12 CUI Rongrong2 XIE Yinfeng2
(1. Co-Innovation Centre for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; 2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)
乙烯 β-氰丙氨酸合酶 交替呼吸氧化酶 氰化物 盐胁迫 杨树
ethylene β-cyanoalanine synthase alternative oxidase cyanide salt stress poplar(Populus spp.)
【目的】探讨木本植物线粒体β-氰丙氨酸合成酶在乙烯诱导的交替呼吸氧化酶(AOX)途径对盐胁迫响应中的作用。【方法】选取盐胁迫下‘南林895'杨叶片,利用HPLC测定氨基环丙烷羧酸(ACC,乙烯前体)含量,实时荧光定量PCR分析基因表达,比色法测定半胱氨酸水平。【结果】盐胁迫使杨树幼苗叶片ACC积累,乙烯合成相关酶(ACS7和ACO3)、氰丙氨酸合酶(CYS C1),以及腈水解酶(NIT4)等基因显著上调表达,同时伴随着线粒体交替呼吸氧化酶(AOX1b)基因的上调和细胞色素c氧化酶(COX6b)基因下调表达。水杨基氧肟酸(SHAM)预处理导致AOX1b基因表达被抑制,电解质渗透率(EL)和丙二醛(MDA)含量上升,但不影响CYS C1表达。而乙烯合成抑制剂氨基氧乙酸(AOA)了抑制CYS C1和盐胁迫诱导的AOX1b基因的表达,并增加EL和MDA含量。此外,AOA恢复盐胁迫减少的半胱氨酸含量,而SHAM和抗霉素A(AA)均无此效应。【结论】杨树叶片CYS C1参与了乙烯激发的耐盐响应,但乙烯诱导的交替呼吸氧化酶(AOX)并未位于CYS C1上游而发挥作用。
【Objective】This study aimed to investigate the role of mitochondrial β-cyanoalanine synthase(CAS)in the induction of the ethylene(ETH)-associated alternative oxidase(AOX)pathway in response to salt stress in woody plants. 【Method】 We studied the 1-aminocyclopropane-1-carboxylic acid(ACC, an ETH precursor)content using high performance liquid chromatography, the gene relative expression via quantitative real-time PCR, and cysteine levels using colorimetric methods in NaCl-treated Bopulus×enramericana ‘Nanlin 895'(salt-insensitive clone hybrids)leaves. 【Result】 Salt stress to ‘Nanlin 895'steckling caused an accumulation of ACC and rapid up-regulation in the expression of ETH biosynthetic genes(ACS7 and ACO3), the mitochondrial CAS gene(CYS C1), and the β-cyanoalaninenitrilases gene(NIT 4), followed by an increase in AOX1b expression and a decrease in the transcription level of the cytochrome c oxidase gene(COX6b)in the leaves. The application of salicylhydroxamic acid(SHAM, an AOX inhibitor)significantly reduced AOX1b expression and elevated the malonyldialdehyde(MDA)concentration and electrolyte leakage(EL)level but had no evident effect on the expression of CYS C1. Conversely, the modulation of aminooxyacetic acid(AOA, an ETH biosynthesis inhibitor)not only reduced CYS C1 transcription, but also blocked salt-induced AOX1b expression and increased the levels of MDA and EL. Furthermore, AOA recovered the salt-reduced cysteine content, whereas both SHAM and antimycin A(an AOX activator)failed to affect the cysteine level. 【Conclusion】 These results indicate that mitochondrial CYS C1 is involved in the ETH-induced pathway, functioning upstream of AOX in poplar responses to salt stress.


[1] BLEECKER A B, KENDE H. Ethylene: a gaseous signal molecule in plants [J]. Annual Review of Cell and Developmental Biology, 2000,16(1): 1-18. DOI: 10.1146/annurev.cellbio.16.1.1. [2] CAO W H, LIU J, HE X J,et al. Modulation of ethylene responses affects plant salt-stress responses [J]. Plant Physiol, 2007, 143(2): 707-719. DOI: 10.1104/pp.106.094292. [3] VAHALA J, RUONALA R, KEINÄNEN M, et al. Ethylene insensitivity modulates ozone-induced cell death in birch [J]. Plant Physiol, 2003, 132(1): 185-195. DOI: 10.1104/pp.102.018887. [4] WANG H H, LIANG X L, WAN Q,et al. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress [J]. Planta, 2009, 230(2): 293-307. DOI: 10.1007/s00425-009-0946-y. [5] PEISER G D, WANG T T, HOFFMAN N E, et al. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene [J]. Proceedings of the National Academy of Sciences of the United States of America,1984,81(10)3059-3063. DOI: 10.1073/pnas.81.10.3059. [6] SIEGIEN I, BOGATEK R. Cyanide action in plants-from toxic to regulatory [J]. Acta Physiolo Plant, 2006,28(5): 483-497. DOI: 10.1007/bf02706632. [7] ÁLVAREZ C, GARCIA I, ROMERO L C,et al. Mitochondrial sulfide detoxification requires a functional isoform O-acetylserine(thiol)lyase C in Arabidopsis thaliana [J]. Molecular Plant, 2012, 5(6): 1217-1226. DOI: 10.1093/mp/sss043. [8] PIOTROWSKI M. Primary or secondary? Versatile nitrilases in plant metabolism [J]. Phytochemistry, 2008, 69(15): 2655-2667. DOI: 10.1016/j.phytochem.2008.08.020. [9] HATZFELD Y, MARUYAMA A, SCHMIDT A,et al. beta-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis [J]. Plant Physiol, 2000, 123(3): 1163-1172. DOI: 10.1104/pp.123.3.1163. [10] WATANABE M, KUSANO M, OIKAWA A, et al. Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis [J]. Plant Physiol, 2008,146(1): 310-320. DOI: 10.1104/pp.107.106831. [11] 余璐璐, 曹中权, 刘龙山,等.盐芥CAS基因的生物信息学分析及在盐胁迫下的表达 [J]. 江苏农业科学, 2015, 43(7): 25-29. DOI: 10, 15889/j. issn. 1002-1302, 2015, 07, 007.43. [12] DA SILVA C J, BATISTA FONTES E P, MODOLO L V. Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana [J]. Plant Science, 2017, 256: 148-159. DOI: 10.1016/j.plantsci.2016.12.011. [13] GARCÍA I, ROSAS T, BEJARANO E R,et al. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response [J]. Plant Physiol, 2013, 162(4): 2015-2027. DOI: 10.1104/pp.113.219436. [14] CHIVASA S, CARR J P. Cyanide restores N gene-mediated resistance to tobacco mosaic virus in transgenic tobacco expressing salicylic acid hydroxylase [J]. Plant Cell, 1998, 10(9): 1489-1498. DOI: 10.1105/tpc.10.9.1489. [15] CHIVASA S, MURPHY A M, NAYLOR M,et al. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism [J]. Plant Cell, 1997, 9(4): 547-557. DOI: 10. 1105tpc.9.4.547. [16] WANG H H, LIANG X L, HUANG J J, et al. Involvement of ethylene and hydrogen peroxide in induction of alternative respiratory pathway in salt-treated Arabidopsis calluses [J]. Plant and Cell Physiol, 2010, 51(10): 1754-1765. DOI: 10.1093/pcp/pcq134. [17] JANSSON S, DOUGLAS C J. Populus: A model system for plant biology[J]. Annual Review of Plant Biology, 2007,58(1): 435-458. DOI: 10.1146/annurev.arplant.58.032806.103956. [18] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔct Tmethod[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262. [19] LIZADA M C, YANG S F. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid [J]. Analytical Biochemistry, 1979, 100(1): 140-145. DOI: 10.1016/0003-2697(79)90123-4. [20] GAITONDE M K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids [J]. The Biochem J, 1967, 104(2): 627-633. DOI: 10.1042/bj1040627. [21] TAKÁCS Z, POÓR P, TARI I. Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions [J]. Plant Physiol Biochem, 2016, 108: 266-278. DOI: 10.1016/j.plaphy.2016.07.020. [22] KHAN M M, ISLAM E, IREM S, et al. Pb-induced phytotoxicity in para grass(Brachiaria mutica)and Castorbean(Ricinus communis L.): antioxidant and ultrastructural studies [J]. Chemosphere, 2018, 200: 257-265. DOI: 10.1016/j.chemosphere.2018.02.101. [23] WANG H H, HUANG J J, BI Y R. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress [J]. Plant Signaling &Behavior, 2010,5(12): 1636-1637. DOI: 10.4161/psb.5.12.13775. [24] ZHU L, LI Y M, LI L,et al. Ethylene is involved in leafy mustard systemic resistance to Turnip mosaic virus infection through the mitochondrial alternative oxidase pathway [J]. Physiol Mol Plant Pathol, 2011, 76(3/4): 166-172. DOI: 10.1016/j.pmpp.2011.09.005. [25] LI Z G. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants[M]//CADENAS E, PACKER L. Hydrogen sulfide in redox biology. Pt B. San Diego: Elsevier Academic Press Inc, 2015: 253-269. DOI: 10.1016/bs.mie.2014.11.035. [26] GARCÍA I, CASTELLANO J M, VIOQUE B, et al. Mitochondrial β-cyanoalanine synthase is essential for root hair formation in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(10): 3268-3279. DOI: 10.1105/tpc.110.076828. [27] MØLLER I M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species [J]. Ann Rev Plant Physiol Plant & MolBiol, 2001, 52(1): 561-591. DOI: 10.1146/annurev.arplant.52.1.561. [28] WAGNER A M, MOORE A L. Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism [J]. Bioscience Reports, 1997, 17(3): 319-333. DOI: 10.1023/a:1027388729586.


收稿日期:2019-02-17 修回日期:2019-04-10 基金项目:国家自然科学基金项目(31600482); 江苏省自然科学基金项目(BK20150882)。 第一作者:廖杨文科(liaoyangwenke@163.com),讲师,博士,ORCID(0000-0001-9142-7701)。
更新日期/Last Update: 2019-11-30