[1]夏 溪,奉树成,张春英*.新型分子生物学技术在花卉定向育种中的应用进展[J].南京林业大学学报(自然科学版),2019,43(06):173-180.
 XIA Xi,FENG Shucheng,ZHANG Chunying*.Advance in flower directive breeding using new molecular biology techniques[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(06):173-180.





Advance in flower directive breeding using new molecular biology techniques
夏 溪奉树成 张春英*
(上海植物园,上海城市植物资源开发应用工程技术中心,上海 200231)
XIA XiFENG ShuchengZHANG Chunying*
(Shanghai Botanical Garden,Shanghai Urban Plant Resources Development and Application Engineering Research Center,Shanghai 200231, China)
花卉 定向育种 转基因技术 基因编辑 高通量测序
Keywords:flower directive breeding transgenic techniques gene editing next generation sequencing(NGS)
S68; Q78
Molecular biology techniques can be used to improve the precision and efficiency of flower directive breeding. In various molecular breeding techniques, the transgenic is the most widely used one, the gene editing and next generation sequencing(NGS)techniques have been more and more adopted in recent years. In this article, we reviewed the recent flower breeding studies in color, fragrance, plant shape and resistance breeding using transgenic and gene editing. In addition, we introduced how NGS was used in molecular mechanism, gene localization and molecular marker development, which could empower in breeding. Finally, we make the suggestions on how to use new molecular biology techniques in directive breeding, aiming at providing references for the directive breeding of ornamental plants with novel flower colors, fragrance, morphology and stress tolerance.


[1] VEITCH N C, GRAYER R J. Flavonoids and their glycosides, including anthocyanins[J]. Natural Product Reports, 2011, 28(10): 1626. DOI:10.1039/c1np00044f. [2] MOMONOI K, YOSHIDA K, MANO S, et al. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation[J]. The Plant Journal, 2009, 59(3): 437-447. DOI:10.1111/j.1365-313x.2009.03879.x. [3] DI STILIO V S, MARTIN C, SCHULFER A F, et al. An ortholog of MIXTA-like2 controls epidermal cell shape in flowers of Thalictrum[J]. New Phytologist, 2009, 183(3): 718-728. DOI:10.1111/j.1469-8137.2009.02945.x. [4] NODA N. Recent advances in the research and development of blue flowers[J]. Breeding Science, 2018, 68(1): 79-87. DOI:10.1270/jsbbs.17132. [5] 徐清燏, 戴思兰. 蓝色花卉分子育种[J].分子植物育种, 2004, 2(1): 93-99. DOI:10.3969/j.issn.1672-416X.2004.01.014. XU Q Y, DAI S L. Blue flowers' molecular breeding[J]. Molecular Plant Breeding, 2004, 2(1): 93-99. [6] ZHANG T X, SUN M, GUO Y H, et al. Overexpression of LiDXS and LiDXR from lily(Lilium ‘Siberia')enhances the terpenoid content in tobacco flowers[J]. Frontiers in Plant Science, 2018, 9: 909. DOI:10.3389/fpls.2018.00909. [7] WANG C L, XING J S, CHIN C K, et al. Modification of fatty acids changes the flavor volatiles in tomato leaves[J]. Phytochemistry, 2001, 58(2): 227-232. DOI:10.1016/s0031-9422(01)00233-3. [8] MUHLEMANN J K, MAEDA H, CHANG C Y, et al. Developmental changes in the metabolic network of snapdragon flowers[J]. PLoS One, 2012, 7(7): e40381. DOI:10.1371/journal.pone.0040381. [9] COLQUHOUN T A, CLARK D G. Unraveling the regulation of floral fragrance biosynthesis[J]. Plant Signaling & Behavior, 2011, 6(3): 378-381. DOI:10.4161/psb.6.3.14339. [10] VERDONK J C. ODORANT1 regulates fragrance biosynthesis in petunia flowers[J]. The Plant Cell Online, 2005, 17(5): 1612-1624. DOI:10.1105/tpc.104.028837. [11] ZUKER A, TZFIRA T, BEN-MEIR H, et al. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene[J]. Molecular Breeding, 2002, 9(1): 33-41. DOI:10.1023/A:1019204531262. [12] MATSUI K, FUKUTOMI S, WILKINSON J, et al. Effect of overexpression of fatty acid 9-hydroperoxide lyase in tomatoes(Lycopersicon esculentum Mill.)[J]. Journal of Agricultural and Food Chemistry, 2001, 49(11): 5418-5424. DOI:10.1021/jf010607e. [13] ZHENG Z L, YANG Z B, JANG J C, et al. Modification of plant architecture in Chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene[J]. Journal of the American Society for Horticultural Science, 2001, 126(1): 19-26. DOI:10.21273/jashs.126.1.19. [14] RUOKOLAINEN S, NG Y P, BROHOLM S K, et al. Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition[J]. BMC Plant Biology, 2010, 10(1): 128. DOI:10.1186/1471-2229-10-128. [15] XIE Q L, CHEN G P, LIU Q, et al. Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety[J]. Molecular Breeding, 2015, 35(2): 67. DOI:10.1007/s11032-015-0239-z. [16] JIANG B B, MIAO H B, CHEN S M, et al. The lateral suppressor-like gene, DgLsL, alternated the axillary branching in transgenic Chrysanthemum(Chrysanthemum × morifolium)by modulating IAA and GA content[J]. Plant Molecular Biology Reporter, 2010, 28(1): 144-151. DOI:10.1007/s11105-009-0130-3. [17] PELLEGRINESCHI A, DAMON J P, VALTORTA N, et al. Improvement of ornamental characters and fragrance production in lemon-scented Geranium through genetic transformation by Agrobacterium rhizogenes[J]. Nature Biotechnology, 1994, 12(1): 64-68. DOI:10.1038/nbt0194-64. [18] 李明亮, 张辉, 胡建军, 等. 转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J]. 林业科学, 2000, 36(2): 93-97. DOI:10.3321/j.issn:1001-7488.2000.02.015. LI M L, ZHANG H, HU J J, et al. Study on insect-resistant transgenic poplar plants containing both bt and pi gene[J]. Scientia Silvae Sinicae, 2000, 36(2): 93-97. [19] SHINOYAMA H, SANO T, SAITO M, et al. Induction of male sterility in transgenic chrysanthemums(Chrysanthemum morifolium Ramat.)by expression of a mutated ethylene receptor gene, Cm-ETR1/H69A, and the stability of this sterility at varying growth temperatures[J]. Molecular Breeding, 2012, 29(2): 285-295. DOI:10.1007/s11032-010-9546-6. [20] TAKATSU Y, NISHIZAWA Y, HIBI T, et al. Transgenic Chrysanthemum(Dendranthema grandiflorum(Ramat.)Kitamura)expressing a rice chitinase gene shows enhanced resistance to gray mold(Botrytis cinerea)[J]. Scientia Horticulturae, 1999, 82(1/2): 113-123. DOI:10.1016/s0304-4238(99)00034-5. [21] CHEN J R, LÜ J J, LIU R, et al. DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose(Rosa chinensis Jacq.)[J]. Plant Growth Regulation, 2010, 60(3): 199-211. DOI:10.1007/s10725-009-9434-4. [22] YU C W, QIAO G R, QIU W M, et al. Molecular breeding of water lily:engineering cold stress tolerance intotropical water lily[J].Horticulture Research, 2018, 5: 73. DOI:10.1038/s41438-018-0086-2. [23] HONG B, TONG Z, MA N, et al. Heterologous expression of the AtDREB1A gene in Chrysanthemum increases drought and salt stress tolerance[J]. Science in China Series C(Life Sciences), 2006, 49(5): 436-445. DOI:10.1007/s11427-006-2014-1. [24] 洪波, 仝征, 李邱华, 等. 地被菊花Fall Color体细胞胚途径再生、遗传转化及转基因植株的抗寒性检测[J].中国农业科学, 2006, 39(7): 1443-1450. DOI:10.1360/aps040087. HONG B, TONG Z, LI Q H, et al. Regeneration and transformation through somatic embryogenesis, and determination of cold stress tolerance in ground cover Chrysanthemum cv. fall color[J]. Scientia Agricultura Sinica, 2006, 39(7): 1443-1450. [25] CHEN L, CHEN Y, JIANG J F, et al. The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance[J]. Plant Cell Reports, 2012, 31(9): 1747-1758. DOI:10.1007/s00299-012-1288-y. [26] VINOCUR B, ALTMAN A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2): 123-132. DOI:10.1016/j.copbio.2005.02.001. [27] DING Y D, LI H, CHEN L L, et al. Recent advances in genome editing using CRISPR/Cas9[J]. Frontiers in Plant Science, 2016, 7: 703. DOI:10.3389/fpls.2016.00703. [28] WANG F J, WANG C L, LIU P Q, et al. Enhanced rice blast resistance by CRISPR/cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): e0154027. DOI:10.1371/journal.pone.0154027. [29] TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7: 14438. DOI:10.1038/s41598-017-14832-9. [30] GANTZ V M, BIER E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations[J]. Science, 2015, 348(6233): 442-444. DOI:10.1126/science.aaa5945. [31] SHI J R, GAO H R, WANG H Y, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnology Journal, 2017, 15(2): 207-216. DOI:10.1111/pbi.12603. [32] WANG Y P, CHENG X, SHAN Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951. DOI:10.1038/nbt.2969. [33] 潘洪杏, 刘侠, 万秀清, 等. 利用CRISPR-Cas9基因组编辑技术定向敲除烟草eIF4E-6基因[J]. 分子植物育种, 2017, 15(2): 538-544. DOI:10.13271/j.mpb.015.000538. PAN H X, LIU X, WAN X Q, et al. Directional knockout of e IF4E-6 gene using CRISPR-cas9 genome editing technique[J]. Molecular Plant Breeding, 2017, 15(2): 538-544. [34] MIAO J, GUO D S, ZHANG J Z, et al. Targeted mutagenesis in rice using CRISPR-Cas system[J]. Cell Research, 2013, 23(10): 1233-1236. DOI:10.1038/cr.2013.123. [35] FENG Z Y, ZHANG B T, DING W N, et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research, 2013, 23(10): 1229-1232. DOI:10.1038/cr.2013.114. [36] TSAI S Q, ZHENG Z L, NGUYEN N T, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J]. Nature Biotechnology, 2015, 33(2): 187-197. DOI:10.1038/nbt.3117. [37] ZHANG Y, LIANG Z, ZONG Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nature Communications, 2016, 7: 12617. DOI:10.1038/ncomms12617. [38] BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiology, 2014, 166(3): 1292-1297. DOI:10.1104/pp.114.247577. [39] SOYK S, MÜLLER N A, PARK S J, et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato[J]. Nature Genetics, 2017, 49(1): 162-168. DOI:10.1038/ng.3733. [40] CAI Y P, CHEN L, LIU X J, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean[J]. Plant Biotechnology Journal, 2018, 16(1): 176-185. DOI:10.1111/pbi.12758. [41] SHIBUYA K, WATANABE K, ONO M. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory[J]. Plant Physiology and Biochemistry, 2018, 131: 53-57. DOI:10.1016/j.plaphy.2018.04.036. [42] SHAN Q W, WANG Y P, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(8): 686-688. DOI:10.1038/nbt.2650. [43] DU H Y, ZENG X R, ZHAO M, et al. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9[J]. Journal of Biotechnology, 2016, 217: 90-97. DOI:10.1016/j.jbiotec.2015.11.005. [44] MAO Y F, ZHANG H, XU N F, et al. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Molecular Plant, 2013, 6(6): 2008-2011. DOI:10.1093/mp/sst121. [45] XING H L, DONG L, WANG Z P, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biology, 2014, 14: 327. DOI:10.1186/s12870-014-0327-y. [46] WATANABE K, KOBAYASHI A, ENDO M, et al. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B(DFR-B)locus in the Japanese morning glory Ipomoea(Pharbitis)nil[J]. Scientific Reports, 2017, 7: 10028. DOI:10.1038/s41598-017-10715-1. [47] WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic Research, 2018, 27(1): 25-38. DOI:10.1007/s11248-017-0051-0. [48] NISHIHARA M, HIGUCHI A, WATANABE A, et al. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri[J]. BMC Plant Biology, 2018, 18: 331. DOI:10.1186/s12870-018-1539-3. [49] KUI L,CHEN H,ZHANG W,et al. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale[J]. Frontiers in Plant Science, 2016, 7: 2036. DOI:10.3389/fpls.2016.02036. [50] FU Y F, SANDER J D, REYON D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nature Biotechnology, 2014, 32(3): 279-284. DOI:10.1038/nbt.2808. [51] RAN F A, HSU P D, LIN C Y, et al. Double nicking by RNA-guided CRISPR-Gas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. DOI:10.1016/j.cell.2013.08.021. [52] 张少平, 洪建基, 邱珊莲, 等. 紫背天葵高通量转录组测序分析[J]. 园艺学报, 2016, 43(5): 935-946. DOI:10.16420/j.issn.0513-353x.2016-0140. ZHANG S P, HONG J J, QIU S L, et al. Sequencing and analysis of the transcriptome of Gynura bicolor[J]. Acta Horticulturae Sinica, 2016, 43(5): 935-946. DOI:10.16420/j.issn.0513-353x.2016-0140. [53] JIN X H, HUANG H, WANG L, et al. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars[J]. Frontiers in Plant Science, 2016, 7: 1307. DOI:10.3389/fpls.2016.01307. [54] 何新颖,戚杰,胡永红. 基于比较转录组分析‘乌龙捧盛'牡丹花瓣初步着色的分子机理[G]//张启翔.中国观赏园艺研究进展.北京:中国林业出版社,2017. HE X Y,QI J,HU Y H. Revealing molecular mechanism of preliminary coloring in Paeonia suffruticosa ‘Wulong Pengsheng' petals based on transcriptome comparison[G]//ZHANG Q X.Advances in ornamental horticulture of China. Beijing: China Forestry Publishing House, 2017. [55] WU Q, WU J, LI S S, et al. Transcriptome sequencing and metabolite analysis for revealing the blue flower formation in waterlily[J]. BMC Genomics, 2016, 17: 897. DOI:10.1186/s12864-016-3226-9. [56] 姜福星, 魏丕伟, 江欣燕, 等. 白花虎眼万年青高通量测序及转录组分析[J].现代园林, 2015, 12(4): 312-313. JIANG F X,WEI P W,JIANG X Y,et al. De novo high-throughput sequencing and characterization of the transcriptome of Ornithogalum thyroides[J].Modern Landscape Architecture, 2015, 12(4): 312-313. [57] YAMAGISHI M,TODA S,TASAKI K. The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies(Lilium spp.)[J]. New Phytologist, 2014, 201(3): 1009-1020. DOI:10.1111/nph.12572. [58] 何崇单, 蔡雨蒙, 李萌, 等. 基于银杏花芽3个分化时期转录组测序的相关基因筛选与表达分析[J].园艺学报, 2018, 45(8): 1479-1490. DOI:10.16420/j.issn.0513-353x.2018-0023. HE C D, CAI Y M, LI M, et al. Screening and expression analysis of related genes based on transcriptome sequencing of Ginkgo flower buds at three differentiation stages[J]. Acta Horticulturae Sinica, 2018, 45(8): 1479-1490. [59] 孙霞, 郑成淑, 王秀峰, 等. 菊花花芽分化期叶片和茎尖转录组表达分析[G]//张启翔.中国观赏园艺研究进展.北京:中国林业出版社,2011. SUN X,ZHENG C S,WANG X F,et al. Analysis of transcriptome expressed sequence in the leaves and apcal tips of chrysanthemum duing floral differentiation[G] // Advances in ornamental horticulture of China.Beijing: China Forestry Publishing House,2011. [60] CHANNELIÈRE S,RIVIÈRE S,SCALLIET G,et al. Analysis of gene expression in rose petals using expressed sequence tags[J].FEBS Letters, 2002, 515(1/2/3): 35-38. DOI:10.1016/s0014-5793(02)02413-4. [61] 肖文芳, 李佐, 陈和明, 等. 基于转录组测序的蝴蝶兰微卫星特征分析[G]//张启翔.中国观赏园艺研究进展.北京:中国林业出版社,2015. XIAO W F,LI Z,CHEN H M,et al. Deep sequenced-based transcriptome analysis of microsatellites in Phalaenopsis[G] // Advances in ornamental horticulture of China. Beijing: China Forestry Publishing House,2015. [62] WEI Z Z, SUN Z Z, CUI B B, et al. Transcriptome analysis of colored calla lily(Zantedeschia rehmannii Engl.)by Illumina sequencing: de novo assembly, annotation and EST-SSR marker development[J]. Peer J, 2016, 4: e2378. DOI:10.7717/peerj.2378. [63] ZHANG W W, TIAN D K, HUANG X, et al. Characterization of flower-bud transcriptome and development of genic SSR markers in Asian lotus(Nelumbo nucifera Gaertn.)[J]. PLoS One, 2014, 9(11): e112223. DOI:10.1371/journal.pone.0112223.


 CAI You ming,WU Wen,ZOU Hui yu,et al.Application of Molecular Marker in the Study of Flowers Plants[J].Journal of Nanjing Forestry University(Natural Science Edition),2002,26(06):084.[doi:10.3969/j.jssn.1000-2006.2002.02.023]


收稿日期:2019-02-19 修回日期:2019-05-08 基金项目:上海市科学技术委员会项目(18DZ2283500)。 第一作者:夏溪(xiaxi@shbg.org)。*通信作者:张春英(zhangchunying@shbg.org),教授级高级工程师,ORCID(0000-0001-7733-9297)。
更新日期/Last Update: 2019-11-30