[1]陈俊华,周大松,牛 牧,等.川中丘陵区4种乡土阔叶树细根性状对比研究[J].南京林业大学学报(自然科学版),2020,44(01):031-38.[doi:10.3969/j.issn.1000-2006.201811008]
 CHEN Junhua,ZHOU Dasong,NIU Mu,et al.Comparative analysis on the fine root traits of the four native broad-leaved trees in the hilly region of central Sichuan Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(01):031-38.[doi:10.3969/j.issn.1000-2006.201811008]





Comparative analysis on the fine root traits of the four native broad-leaved trees in the hilly region of central Sichuan Province
陈俊华12周大松12牛 牧3别鹏飞4谢天资12赵 润4慕长龙12*
(1.四川省林业科学研究院,森林与湿地生态恢复与保育四川省重点实验室,四川 成都 610081; 2.四川龙门山森林 生态系统国家定位观测研究站,四川 平武 622550; 3.北京林业大学林学院,北京 100083; 4.绵阳师范学院 生命科学与技术学院,四川 绵阳 621000)
CHEN Junhua12 ZHOU Dasong12 NIU Mu3 BIE Pengfei4 XIE Tianzi12 ZHAO Run4 MU Changlong 12*
(1.Sichuan Academy of Forestry,Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu 610081, China; 2.Sichuan Longmenshan National Positioning Observation and Research Station for Forest Ecosystem, Pingwu 622550, China; 3. College of Forestry, Beijing Forestry University, Beijing 100083, China; 4. Life Science and Technology College, Mianyang Teachers' College, Mianyang 621000, China)
乡土阔叶树 细根性状 细根形态 细根分支结构 养分含量 川中丘陵区
native broad-leaved tree fine root trait fine root morphological characteristic fine root branching structure nutrient content hilly region of central Sichuan Province
【目的】川中丘陵区的主要防护林分为柏木(Cupressus funebris)人工林,由于密度过大、树种单一,严重影响其综合效益的发挥。加上该区域土壤类型大多为紫色土,土层瘠薄、肥力低下,能够适应的树种不多。探明川中丘陵区带状补植的4种乡土阔叶树种[桤木(Alnus cremastogyne)、喜树(Camptotheca acuminata)、香樟(Cinnamomum camphora)、香椿(Toona sinensis)]的细根性状特征,了解它们对地下资源利用策略的种间差异,为该区域防护林树种的选择和经营提供依据。【方法】选择川中丘陵区“带状采伐+补阔”改造的人工柏木林分作为研究对象,对补植的林龄为7 a的4种乡土阔叶树——桤木、喜树、香樟、香椿,各选取5株长势均匀、良好的植株,采用“全株挖掘法”挖取其根系,研究其细根(直径<2 mm)的生物量、形态以及分支结构等性状特征。【结果】①桤木细根的生物量密度为(0.156±0.030)kg/m3,分别是喜树、香樟和香椿的15.67、11.72和4.61倍。桤木、喜树、香樟、香椿的细根表面积密度分别是0.99、0.45、0.68和1.13 m2/m3; 根长密度分别是110.33、10.58、26.64和97.56 m/m3。②4种阔叶树细根的平均直径大小依次为喜树(1.67 mm)>香樟(1.06 mm)>香椿(0.77 mm)> 桤木(0.73 mm)。桤木、喜树、香樟、香椿的比根长和比表面积分别是62.54、49.31、81.53、287.50 cm/g和13.58、25.61、27.35、83.15 cm2/g。桤木的根组织密度显著高于其他3个树种(df=3, F=360.726, P<0.05)。③桤木的比根尖数、根尖密度、分枝密度分别为1 056个/g、2.37个/cm、2.65个/cm,均明显高于喜树、香樟、香椿3个阔叶树种(df=3,F=391.659,P<0.01; df=3,F=103.857, P<0.05; df=3,F=104.617, P<0.05)。④桤木细根中全氮含量分别比喜树、香樟、香椿高33.27%、88.65%、21.93%。香椿的全碳、全磷、全钾储量在4种树种中均最高。【结论】在带状采伐的前几年,由于采伐带内阳光充足,作为阳性树种的桤木和香椿,表现出强劲的竞争力,细根生物量密度较大。另一方面,改造初期,由于土层瘠薄,土壤水分含量较低,作为浅根性树种的桤木和香椿,通过增加水平根系的分支来获取更多的土壤空间从而吸收更多的营养,而香樟和喜树则通过增加细根直径和垂直深度来获取土壤空间,提高获取营养的能力。由此可见,川中丘陵区的4种阔叶树的细根性状具有明显差异,反映了不同的资源获取策略。
【Objective】 Although cypress(Cupressus funebris)plantations are the predominant type of protected forests in the central Sichuan hilly region of China, their comprehensive benefits have not yet to be realized, owing to the high-density nature of stands and single-species composition. Moreover, only a few tree species can adapt to the central Sichuan hilly region, which is characterized by shallow infertile purple soils. In order to gain scientific evidence on which to base the selection and management of protected forest species in the central Sichuan hilly region, we examined the fine root traits of four native broad-leaved tree species(Alnus cremastogyne, Camptotheca acuminata, Cinnamomum camphora and Toona sinensis), which were planted in strips cut in cypress stands to determine differences in the utilization of below-ground resources among these four species. 【Method】 In order to enhance Cupressus funebris monoculture, we examined the effects Cupressus funebris stand modification by cutting strips among the Cupressus funebris trees and replanting these with four native broad-leaved tree species(A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis)7 years age. Five typical healthy individuals of each tree species were selected and we extracted whole root systems in order to analyze features such as fine root(diameter < 2 mm)biomass traits, morphological characteristics, and branching structure. 【Result】 ① We observed that the root biomass density of fine roots was highest in A. cremastogyne [(0.156 ± 0.030)kg/m3], which was 15.67, 11.72 and 4.61 times higher than that of Camptotheca acuminata, Cinnamomum camphora and T. sinensis, respectively. The root surface area density of A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis was 0.99, 0.45, 0.68 and 1.13 m2/m3, respectively, and the root length density was 110.33, 10.58, 26.64 and 97.56 m/m3, respectively. ② The average root diameter of the four species was ranked as Camptotheca acuminata(1.67 mm)> Cinnamomum camphora(1.06 mm)> T. sinensis(0.77 mm)> A. cremastogyne(0.73 mm). The specific root lengths for A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis were 62.54, 49.31, 81.53, 287.50 cm/g, whereas their specific root surface areas were 13.58, 25.61, 27.35 and 83.15 cm2/g, respectively. The root tissue density of A. cremastogyne was found to be significantly higher than that of the other three species(df = 3, F = 360.726, P < 0.05). ③ The specific root tip number(df = 3, F = 391.659, P < 0.01), root tip density(df = 3, F = 103.857, P < 0.05), and root fork density(df = 3, F = 104.617, P < 0.05)of A. cremastogyne were 1 056 tips/g, 2.37 tips/cm and 2.65 tips/cm respectively, which were also significantly higher than those of the other three species. ④ Although the total N content in the fine roots of A. cremastogyne was 33.27%, 88.65% and 21.93% higher than that of Camptotheca acuminata, Cinnamomum camphora and T. sinensis, the reserves of total C, total P and total K content were found to be highest in T. sinensis. 【Conclusion】 In the early stages of stand transformation, A. cremastogyne and T. sinensis (which are the light demanding tree species)have higher root biomass density and stronger competitiveness due to the abundance of sunlight in the cut strips. Furthermore, during the early stage of this study, the experimental stand was characterized by poor soil quality and low soil moisture content, conditions under which these two shallow-rooted tree species can gain access to larger amounts soil space and nutrients by increasing the branching of horizontal roots. In contrast, Camptotheca camphora and Cinnamomum acuminate acquire soil space and nutrients by increasing fine-root diameter and vertical depth. Collectively, the results of this study indicate that there are significant differences in the fine-root traits of four examined broad-leaved trees species growing in the central Sichuan hilly region of China, and that these difference reflect differences in the strategies used for resource acquisition


[1] 李贤伟,罗承德,胡庭兴,等. 长江上游退化森林生态系统恢复与重建刍议[J]. 生态学报,2001, 21(12): 2117-2124. LI X W, LUO C D, HU T X, et al. Suggestions on restoration and reconstruction of degraded forest ecosystem in the upper reaches of the Yangtze River [J]. Acta Ecologica Sinica, 2001, 21(12): 2117-2124. DOI: 10. 3321/j. issn: 1000-0933. 2001.12. 021.
[2] 龚固堂,牛牧,慕长龙,等. 间伐强度对柏木人工林生长及林下植物的影响[J]. 林业科学,2015,51(4):8-15. GONG G T, NIU M, MU C L, et al. Impacts of different thinning intensities on growth of Cupressus funebris plantation and understory plants [J]. Scientia Silvae Sinicae, 2015, 51(4): 8-15. DOI: 10.11707/j.1001-7488.20150402.
[3] 陈俊华,龚固堂,胡道亮,等. 川中丘陵区低效防护林 “开窗补阔”改造模式对不同施肥措施的响应[J]. 四川林业科技,2011, 32(1): 74-79. CHEN J H, GONG G T, HU D L, et al. Responses of “opening window and supplementing broad-leaved tree” revamping patterns of three kinds of inefficient protection forest in hilly areas of central Sichuan to the different fertilizer practice[J]. Journal of Sichuan Forestry Science and Technology, 2011, 32(1): 74-79. DOI: 10. 3969/j. issn. 1003-5508. 2011.01.012.
[4] 黎燕琼,龚固堂,郑绍伟,等. 低效柏木纯林不同改造措施对水土保持功能的影响[J]. 生态学报, 2013, 33(3): 934-943. LI Y Q, GONG G T, ZHENG S W, et al. Impact on water and soil conservation of different bandwidths in low-efficiency cypress forest transformation [J]. Acta Ecologica Sinica, 2013, 33(3): 934-943. DOI: 10. 5846/stxb201207140993.
[5] 刘浩. 川中丘陵柏木低效林改造初期水土保持效益研究[D]. 雅安: 四川农业大学, 2014. LIU H. Cupressus funebris in efficient forest transformation early period soil and water conservation effectiveness studies in central Sichuan hilly region [D]. Ya'an: Sichuan Agricultural University, 2014.
[6] 张翠翠. 川中丘陵区柏木低效林不同改造模式对水土流失及土壤质量的影响[D]. 雅安:四川农业大学, 2016. ZHANG C C. Impact of soil and water loss and soil quality under different reconstructing patterns in low-efficiency cypress forest in hilly area of central Sichuan, China [D]. Ya'an: Sichuan Agricultural University, 2016.
[7] 潘业田. 林窗改造模式对川中丘陵区柏木低效林植物及土壤动物多样性的影响[D]. 雅安:四川农业大学,2014. PAN Y T. Influence of different gap reconstruction mode on the understory plant and soil animal biodiversity of low-efficiency cypress forest in hilly area of central Sichuan, China [D]. Ya'an: Sichuan Agricultural University, 2014.
[8] 柏方敏,戴成栋,陈朝祖,等.国内外防护林研究综述[J]. 湖南林业科技,2010, 37(5): 8-14. BAI F M, DAI C D, CHEN C Z, et al. Progress of research on worldwide protection-forest [J]. Hunan Forestry Science & Technology, 2010, 37(5): 8-14. DOI: 10.3969/j. issn. 1003-5710. 2010. 05. 003.
[9] 张宗学,鲁时燕,牛牧,等. 川中丘陵区优良适宜树种选择[J]. 四川林业科技,2014,35(5): 17-22. ZHANG Z X, LU S Y, NIU M, et al. Selection of the excellent and suitable tree species in the hilly regions of middle Sichuan [J]. Journal of Sichuan Forestry Science and Technology, 2014, 35(5): 17-22. DOI: 10. 3969/j. issn. 1003-5508. 2014. 05. 005.
[10] 牛牧,陈俊华,龚固堂,等. 川中丘陵区低效防护林分“开窗补阔”改造试验研究[J]. 西北林学院学报,2015, 30(1): 39-45. NIU M, CHEN J H, GONG G T, et al. Coupe transformation of low-efficiency protection forest in the central hilly Sichuan [J]. Journal of Northwest Forestry University, 2015, 30(1): 39-45. DOI: 10.3969/j. issn. 1001-7461.2015. 01.07.
[11] VOGT K A, VOGT D J, PALMIOTTO P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species [J]. Plant and Soil, 1995, 187(2): 159-219. DOI: 10. 1007/bf00017088.
[12] DE KROON H. Ecology: how do roots interact? [J]. Science, 2007, 318(5856): 1562-1563. DOI: 10. 1126/science. 1150726.
[13] TJOELKER M G, CRAINE J M, WEDIN D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species [J]. New Phytologist, 2005, 167(2): 493-508. DOI: 10.1111/j. 1469-8137. 2005. 01428. x.
[14] FARRISH K W. Spatial and temporal fine-root distribution in three louisiana forest soils[J]. Soil Science Society of America Journal, 1991, 55(6): 1752. DOI: 10.2136/sssaj1991.03615995005500060041x.
[15] CALDWELL M M. Competition between root systems in natural communities[G]// GREGORY P J, LAKE J V, ROSE D A. Root development and function. Cambridge: Cambridge University Press, 1987.
[16] GORDON W S, JACKSON R B. Nutrient concentrations in fine roots[J]. Ecology, 2000, 81(1): 275-280. DOI: 10.2307/177151.
[17] 朱万泽,王金锡,薛建辉,等. 四川桤木光合生理特性研究[J]. 西南林学院学报, 2001, 21(4): 196-204. ZHU W Z, WANG J X, XUE J H, et al. Studies on the physiological characteristics of photosynthesis of Alnus cremastogyne [J]. Journal of Southwest Forestry College, 2001, 21(4): 196-204. DOI: 10. 3969/j. issn. 2095-1914. 2001.04. 002.
[18] 曾淑燕,李映珍. 喜树生物学特性与栽培技术[J]. 广东林业科技, 2007, 23(1): 118-120. ZENG S Y, LI Y Z. The biological properties and the nursing and afforestation technology of Camptotheca acuminate Decne[J]. Journal of Guangdong Forestry Science and Technology, 2007, 23(1): 118-120. DOI: 10. 3969/j. issn. 1006-4427. 2007. 01.028.
[19] 谭桂菲,安家成,黎贵卿,等. 15年生香樟人工林的生物量及生产力[J]. 广西林业科学. 2017, 46(4): 369-374. TAN G F, AN J C, LI G Q, et al. Biomass and productivity of 15-year-old Cinnamomum camphora plantation forest [J]. Guangxi Forestry Science, 2017, 46(4): 369-374. DOI: 10. 3969/j. issn. 1006-1126. 2017. 04. 006.
[20] 陈奋飞. 香椿联合固氮菌的筛选及回接[D]. 福州:福建师范大学,2007. CHEN F F. Selection and inoculation of nitrogen fixing bacteria in Toona sinensis [D]. Fuzhou: Fujiang Normal University, 2007.
[21] 王韦韦,熊德成,黄锦学,等. 亚热带不同演替树种米槠和马尾松细根性状对比研究[J]. 生态学报,2015,35(17): 5813-5821. WANG W W, XIONG D C, HUANG J X, et al. Comparison of fine-root traits between two subtropical tree species Pinus massoniana and Castanopsis carlesii differing in succession stages [J]. Acta Ecologica Sinica, 2015, 35(17): 5813-5821.DOI: 10. 5846/stxb201310312641.
[22] 文仕知,田大伦,杨丽丽,等. 桤木人工林的碳密度、碳库及碳吸存特征[J]. 林业科学, 2010, 46(6): 15-21. WEN S Z, TIAN D L, YANG L L, et al. Carbon density, carbon stock and carbon sequestration in Alnus cremastogyne plantation [J]. Scientia Silvae Sinicae, 2010, 46(6): 15-21. DOI: 10. 11707/j. 1001-7488.20100603.
[23] 陈良华,徐睿,杨万勤,等. Cd污染下香樟和油樟幼苗N、P、K的积累与分配特征[J]. 西北农林科技大学学报(自然科学版),2016, 44(10): 91-99. CHEN L H, XU R, YANG W Q, et al. N, P and K accumulation and al location pattern of Cinnamomum camphora and C. lonpaniculatum seedlings under Cd pollution [J]. Journal of Northwest A & F University(Nat Sci Ed). 2016, 44(10): 91-99. DOI: 10. 13207/j. cnki. jnwafu. 2016. 10. 013.
[24] 管磊,周桂香,朱琴,等. 四川盆地香椿生长规律初步研究[J].四川林业科技, 2011, 32(2): 100-103. GUAN L, ZHOU G X, ZHU Q, et al. A preliminary study of the growth law of Toona sinensis in the Sichuan Basic [J]. Journal of Sichuan Forestry Science and Technology, 2011, 32(2): 100-103. DOI: 10. 3969/j. issn. 1003-5508. 2011.02. 018.
[25] 杨玉坡,李承彪. 四川森林[M]. 北京:中国林业出版社, 1988:1281-1300. YANG Y P, LI C B. Sichuan forest [M]. Beijing: China Forestry Publishing House, 1988: 1281-1300.
[26] XIANG W, WU W, TONG J, et al. Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest [J]. Forestry, 2013, 86(3): 343-351.DOI: 10. 1093/forestry/cpt003.
[27] FARLEY R A, FITTER A H. The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches [J]. Journal of Ecology, 1999, 87(5): 849-859. DOI: 10.1046/j.1365-2745.1999. 00396.x.
[28] BAUHUS J, MESSIER C. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada [J]. Canadian Journal of Forest Research, 1999, 29(2): 260-273. DOI: 10. 1139/x98-206.
[29] 蔡洁,文仕知,何功秀,等. 湘北四川桤木人工林根系空间分布特征[J]. 浙江林业科技,2010, 30(5): 42-45. CAI J, WEN S Z, HE G X, et al. Spatial distribution of root system of Alnus cremastogyne plantation in the north Hunan Province [J]. Zhejiang Forestry Science & Technology, 2010, 30(5): 42-45. DOI: 10.3969/j.issn.1001-3776.2010.05.009.
[30] 王海风,肖兴翠,龚细娟,等. 桤木生物量及根系分布规律[J]. 湖南林业科技,2013, 40(3): 39-42. WANG H F, XIAO X C, GONG X J, et al. Biomass and root distribution of Alnus cremastogyne plantation [J]. Hunan Forestry Science & Technology, 2013, 40(3): 39-42. DOI: 10.3969/j. issn. 1003-5710. 2013. 03. 010.
[31] MAJDI H, DAMM E, NYLUND J E. Longevity of mycorrhizal roots depends on branching order and nutrient availability [J]. New Phytologist, 2001, 150(1): 195-202. DOI: 10. 1046/j. 1469-8137. 2001.00065. x.
[32] 刘波,余艳峰,张贇齐, 等. 亚热带常绿阔叶林不同林龄细根生物量及其养分[J]. 南京林业大学学报(自然科学版),2008, 32(5): 81-84. LIU B, YU Y F, ZHANG Y Q, et al. Fine-root biomass and related nutrients in different aged stands of subtropical evergreen broad-leaved forest [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(5): 81-84. DOI: 10. 3969/j. issn. 1000-2006. 2008. 05. 018.
[33] 张云鹏,崔建国. 油松蒙古栎混交林细根生物量及养分现存量研究[J]. 浙江林业科技,2007, 27(5): 16-20. ZHANG Y P, CUI J G. Sdudy on fine root biomass and nutrient status in mixed plantation of Quercus mongolicus and Pinus tabulaeformis [J]. Journal of Zhejiang Forestry Science and Technology, 2007, 27(5): 16-20. DOI: 10.3969/j. issn. 1001-3776.2007.05.004.
[34] FINÉR L, OHASHI M, NOGUCHI K, et al. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics [J]. Forest Ecology and Management, 2011, 262(11): 2008-2023. DOI: 10.1016/j. foreco. 2011.08.042.
[35] 梅莉,王政权,张秀娟,等. 施氮肥对水曲柳人工林细根生产和周转的影响[J]. 生态学杂志,2008, 27(10): 1663-1668. MEI L, WANG Z Q, ZHANG X J, et al. Effects of nitrogen fertilization on fine root biomass production and turnover of Fraxinus mandshurica plantation [J]. Chinese Journal of Ecology, 2008, 27(10): 1663-1668. DOI: 10.13292/j. 1000-4890.2008.0337.


收稿日期:2018-11-05 修回日期:2019-09-06基金项目:“十二五”国家科技支撑计划(2015BAD07B0402)。第一作者:陈俊华(295454166@qq.com),研究员,ORCID(0000-0001-8549-6970)。*通信作者:慕长龙(mucl2006@aliyun.com),研究员,ORCID(0000-0003-4927-7425)。
更新日期/Last Update: 2020-01-15