[1]董玉峰,朱婉芮,丁昌俊,等.杨树不同根序细根形态对酚酸的响应[J].南京林业大学学报(自然科学版),2020,44(01):039-46.[doi:10.3969/j.issn.1000-2006.201807055]
 DONG Yufeng,ZHU Wanrui,DING Changjun,et al.Root order-dependent responses of poplar fine root morphology to phenolic acids[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(01):039-46.[doi:10.3969/j.issn.1000-2006.201807055]
点击复制

杨树不同根序细根形态对酚酸的响应
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年01期
页码:
039-46
栏目:
研究论文
出版日期:
2020-01-15

文章信息/Info

Title:
Root order-dependent responses of poplar fine root morphology to phenolic acids
文章编号:
1000-2006(2020)01-0039-08
作者:
董玉峰1朱婉芮2丁昌俊3黄秦军3王华田2李善文1王延平2*
(1.山东省林业科学研究院,山东省林木遗传改良重点实验室,山东 济南 250014; 2.山东农业大学林学院, 山东省森林培育重点实验室,山东 泰安 271018; 3.中国林业科学研究院林业研究所,北京 100091)
Author(s):
DONG Yufeng1 ZHU Wanrui2 DING Changjun3 Huang Qinjun3 WANG Huatian2 LI Shanwen1 WANG Yanping2*
(1.Shandong Academy of Forestry, Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Jinan 250014, China; 2.College of Forestry, Shandong Agricultural University, Shandong Provincial Key Laboratory of Silviculture, Taian 271018, China; 3.Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)
关键词:
杨树 细根形态 细根生物量 解剖特征 根序 酚酸
Keywords:
poplar fine root morphology fine root biomass anatomical trait root order phenolic acid
分类号:
S718.5
DOI:
10.3969/j.issn.1000-2006.201807055
文献标志码:
A
摘要:
【目的】细根生长与森林生产力的关系十分密切,而酚酸在根际的累积可能影响杨树根系形态建成及生物量分配进而影响生产力。笔者通过模拟杨树人工林根际酚酸环境,探究杨树幼苗根系形态建成对酚酸的响应,深入揭示根-土界面性质改变对林木根系生长的影响,为探明人工林根际过程和林分生产力之间的关系提供参考。【方法】以改良Hoagland 营养液为基础,参照连作二代杨树人工林土壤酚酸含量配制溶液并进行杨树幼苗培养。采集杨树幼苗根系,按50%的比例选取细根(根径D < 2 mm)样本并按根序进行分级,制作1~5级根序细根石蜡横剖面切片。采用根系扫描仪结合分析软件获得各根序细根的长度、直径,利用光学显微镜观察各根序细根的剖面直径、维管束(中柱)直径等参数,并计算比根长、根组织密度、维根比等。采用Origin Pro 8.0进行数据的差异显著性检验并作图,分析细根形态特征和剖面结构参数的相关性。【结果】酚酸处理显著减少了杨树幼苗根系生物量。1~5级根序细根的生物量在对照和酚酸处理间无显著差异,但其所占生物量比例显著增加。酚酸处理总体抑制了杨树幼苗细根的伸长生长,1~3级根序细根的长度显著低于对照。酚酸处理具有增大杨树根系直径的效应,但1~5级根序细根的表面积在酚酸处理下均较对照显著下降。酚酸处理显著影响了杨树幼苗各根序细根的比根长和根组织密度,使比根长显著下降而根组织密度显著增大。此外,酚酸显著影响了杨树幼苗根系的生长发育,酚酸处理下1~5级根序细根的维根比显著增大,根系内输导组织分化显著。【结论】酚酸对杨树细根生长发育具有一定抑制作用,酚酸处理下不同根序细根形态的变化体现了根系功能的改变,这将影响根系吸收进而对杨树地上部分的生长产生抑制。不同根序细根形态建成的差异性也在一定程度上反映出酚酸影响下杨树根系的生长策略。
Abstract:
【Objective】 Forest productivity is closely related to fine root growth, and in this study, we simulated field concentrations of phenolic acids to examine the morphological responses of poplar seedling roots to phenolic acids. The objective was to provide in-depth insights into the rhizosphere effects of tree roots.【Method】 Using an improved Hoagland solution, we generated phenolic acid environments designed to reflect the contents of phenolic acids in the soils of a successive rotation poplar plantation. All roots of poplar seedlings were harvested and 50% of the fine roots(diameter < 2 mm)were sampled and grouped according to order. A WINRHIZO root system analyzer and associated software were used to determine the morphological traits, including root length and diameter, of each fine root order(orders 1-5). Permanent paraffin cross-sections of fine roots of each order were prepared to observe anatomical traits, such as cross-section diameter and vascular cylinder(stele)diameter. Finally, several important parameters related to fine root morphology, including specific root length(SRL), root tissue density(RTD), and the ratio of vascular cylinder to cross-section area were calculated. Origin Pro 8.0 software was employed for data analysis and MS Excel was used to analyze the relationship between root morphology and the cross-section structures of the different fine root orders. 【Result】 We found that poplar roots biomass(dry weight)was significantly reduced after phenolic acid treatment. Although the biomass of fine root orders 1 to 5 showed no significant difference between the control check(CK)and phenolic acid treatments, the ratio of fine roots to total roots was significantly higher in seedlings receiving phenolic acid treatment than that of CK seedlings. Phenolic acids inhibited the elongation growth of fine roots, with the lengths of fine root orders 1 to 3 being significantly reduced under phenolic acid treatment. Furthermore, seedlings treated with phenolic acids showed an increase in fine root diameter, whereas the surface areas of fine root orders 1 to 5 were smaller under phenolic acid treatment than that of CK seedlings. Phenolic acids also affected the SRL and RTD, with the former being reduced and the latter increased in response to treatment. The anatomical traits of poplar roots were significantly altered under phenolic acid treatment, and the ratios of vascular cylinder to cross-section diameter of the roots of each order were increased, thereby indicating significant changes in the transport tissues of fine roots. 【Conclusion】 Phenolic acids were found to have significant inhibitory effects on the fine root growth and development of poplar cuttings. The changes in fine root morphology revealed the variability in roots function under phenolic acid treatment, which would affect the absorptive function of fine roots and further inhibit the above-ground biomass growth of poplar. Furthermore, we characterized the strategies of tree root development and growth investment in response to phenolic acids with respect to differences in fine root morphology among different root orders

参考文献/References:


[1] BLOOMFIELD J, VOGT K A, WARGO P M. Tree root turnover and senescence[G]// WAISEL Y, ESHEL A, KAFKAFI U. Plant roots, the hidden half. 2nd ed. New York: Marcel Dekker Press, 1996, 363-381.
[2] NORBY R J, JACKSON R B. Root dynamics and global change: seeking an ecosystem perspective[J]. New Phytologist, 2000, 147(1): 3-12. DOI:10.1046/j.1469-8137.2000.00676.x.
[3] BLOCK R M A, VAN REES K C J, KNIGHT J D. A review of fine root dynamics in Populus plantations[J]. Agroforestry Systems, 2006, 67(1): 73-84. DOI:10.1007/s10457-005-2002-7.
[4] SCHENCK Z S M, JÖRGENSEN R G, MÜLLER T. Rhizodeposition:its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(5): 750-760. DOI:10.1002/jpln.201100300.
[5] FITTER A H, SELF G K, WOLFENDEN J, et al. Root production and mortality under elevated atmospheric carbon dioxide[J]. Plant and Soil, 1995, 187(2): 299-306. DOI:10.1007/bf00017095.
[6] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1): 9-24. DOI:10.1111/j.1469-8137.2004.01015.x.
[7] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2): 5-33. DOI:10.1007/s11104-009-9925-0.
[8] 孙悦, 徐兴良, KUZYAKOV Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75. SUN Y, XU X L, KUZYAKOV Y. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62-75.DOI:10.3724/SP.J.1258.2018.00007.
[9] LI Z H, WANG Q, RUAN X, et al. Phenolics and plant allelopathy[J]. Molecules, 2010, 15(12): 8933-8952. DOI:10.3390/molecules15128933.
[10] ALONI R, ALONI E, LANGHANS M, et al. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism[J]. Annals of Botany, 2006, 97(5): 883-893. DOI:10.1093/aob/mcl027.
[11] OSMONT K S, SIBOUT R, HARDTKE C S. Hidden branches: developments in root system architecture[J]. Annual Review of Plant Biology, 2007, 58(1): 93-113. DOI:10.1146/annurev.arplant.58.032806.104006.
[12] 谭秀梅, 王华田, 孔令刚, 等. 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J]. 山东大学学报(理学版), 2008, 43(1): 14-19. TAN X M, WANG H T, KONG L G, et al. Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes[J]. Journal of Shandong University(Natural Science), 2008, 43(1): 14-19.
[13] 王延平, 王华田, 许坛, 等. 酚酸对杨树人工林土壤养分有效性及酶活性的影响[J]. 应用生态学报, 2013, 24(3): 667-674. WANG Y P, WANG H T, XU T, et al. Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 667-674.
[14] 许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20(3): 491-498. XU T, WANG H T, WANG Y P, et al. Correlation between soil nutrient availability and bacteria community succession in poplar plantations[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 491-
[23] RICE E L. Allelopathy[M].2nd ed. New York: Academic Press Inc, 1984: 267-290.
[24] 杨阳, 王华田, 王延平, 等. 外源酚酸对杨树幼苗根系生理和形态发育的影响[J]. 林业科学, 2010, 46(11): 73-80. YANG Y, WANG H T, WANG Y P, et al. Effects of exogenous phenolic acids on root physiologic characteristics and morphologic development of poplar hydroponic cuttings[J]. Scientia Silvae Sinicae, 2010, 46(11): 73-80.
[25] 刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. LIU J, XIANG W H, XU X, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 938-945. DOI:10.3773/j.issn.1005-264x.2010.08.006.
[26] HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa[J]. New Phytologist, 2005, 167(2): 509-521.DOI:10.1111/j.1469-8137.2005.01418.x.
[27] HISHI T, TATENO R, TAKEDA H. Anatomical characteristics of individual roots within the fine-root architecture of Chamaecyparis obtusa(Sieb. & Zucc.)in organic and mineral soil layers[J]. Ecological Research, 2006, 21(5): 754-758. DOI:10.1007/s11284-006-0184-8.
[28] CHON S U, CHOI S K, JUNG S, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection, 2002, 21(10): 1077-1082. DOI:10.1016/s0261-2194(02)00092-3.
[29] KAUR H, INDERJIT, KAUSHIK S. Cellular evidence of allelopathic interference of benzoic acid to mustard(Brassica juncea L.)seedling growth[J]. Plant Physiology and Biochemistry, 2005, 43(1): 77-81.DOI:10.1016/j.plaphy.2004.12.007.
[30] GATTI A B, FERREIRA A G, ARDUIN M, et al. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O.Kuntze on development of Sesamum indicum L. seedlings[J]. Acta Botanica Brasilica, 2010, 24(2): 454-461.DOI:10.1590/s0102-33062010000200016.
[31] 严小龙, 廖红, 年海.根系生物学: 原理与方法[M]. 北京: 科学出版社, 2007. YAN X L, LIAO H, NIAN H. Root biology: principles and methods[M]. Beijing: Science Press,2007.
[32] FUKAKI H, OKUSHIMA Y, TASAKA M. Auxin-Mediated lateral root formation in higher plants[C]//FUKAKI H, OKUSHIMA Y, TASAKA M.International Review of Cytology. Elsevier, 2007: 111-137. DOI:10.1016/s0074-7696(07)56004-3.
[33] CASIMIRO I, BEECKMAN T, GRAHAM N, et al. Dissecting Arabidopsis lateral root development[J]. Trends in Plant Science, 2003, 8: 165-171.DOI: 10.1016/S1360-1385(03)00051-7.498.
[15] 王华田, 王延平. 关于连作人工林衰退机理几个热点问题的探讨[J]. 山东大学学报(理学版), 2013, 48(7): 1-8. WANG H T, WANG Y P. Hotspot discussion on decline mechanism of replanted plantation[J]. Journal of Shandong University(Natural Science), 2013, 48(7): 1-8.
[16] VALENZUELA-ESTRADA L R, VERA-CARABALLO V, RUTH L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum(Ericaceae)[J]. American Journal of Botany, 2008, 95(12): 1506-1514. DOI:10.3732/ajb.0800092.
[17] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north american trees[J]. Ecological Monographs, 2002, 72(2): 293. DOI:10.2307/3100029.
[18] BLUM U, DALTON B R. Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture[J]. Journal of Chemical Ecology, 1985, 11(3): 279-301.DOI:10.1007/bf01411415.
[19] BLUM U, REBBECK J. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture[J]. Journal of Chemical Ecology, 1989, 15(3): 917-928. DOI:10.1007/bf01015187.
[20] LEHMAN M E, BLUM U, GERIG T M. Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments[J]. Journal of Chemical Ecology, 1994, 20(7): 1773-1782. DOI:10.1007/bf02059898.
[21] 孔垂华. 植物化感作用研究中应注意的问题[J]. 应用生态学报, 1998, 9(3): 332-336. KONG C H. Problems needed attention on plant allelopathy research[J]. Chinese Journal of Applied Ecology, 1998, 9(3): 332-336. DOI:10.13287/j.1001-9332.1998.0072.
[22] BLUM U, SHAFER S R, LEHMAN M E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model[J]. Critical Reviews in Plant Sciences, 1999, 18(5): 673-693. DOI:10.1080/07352689991309441.

相似文献/References:

[1]赵荣军,费本华,张 波.杨树木材细胞腔径分布的分形表征[J].南京林业大学学报(自然科学版),2008,32(01):137.[doi:10.3969/j.jssn.1000-2006.2008.01.033]
 HAO Rong-jun,FEI Ben-hua,ZHANG Bo.Fractal property of poplar wood cell lumen distribution[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(01):137.[doi:10.3969/j.jssn.1000-2006.2008.01.033]
[2]赵桂华,石立岩,杨怀光,等.杨树内生真菌的分离和鉴定[J].南京林业大学学报(自然科学版),2008,32(02):076.[doi:10.3969/j.jssn.1000-2006.2008.02.017]
[3]王勇,吴小芹*,叶建仁.不同定植处理对杨树溃疡病发生发展的影响[J].南京林业大学学报(自然科学版),2009,33(01):011.[doi:10.3969/j.jssn.1000-2006.2009.01.002]
 WANG Yong,WU Xiao qin*,YE Jian ren.The effect of different planting methods on occurrence and development of poplar canker disease[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):011.[doi:10.3969/j.jssn.1000-2006.2009.01.002]
[4]沈艳华,徐锡增,方升佐*,等.硅对盐胁迫下杨树叶片细胞超微结构的影响[J].南京林业大学学报(自然科学版),2009,33(01):049.[doi:10.3969/j.jssn.1000-2006.2009.01.010]
 SHEN Yan hua,XU Xi zeng,FANG Sheng zuo,et al.Effects of silicon on cell ultrastructure of poplar leaves under salt stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):049.[doi:10.3969/j.jssn.1000-2006.2009.01.010]
[5]程强,潘惠新,徐立安,等.杨树基因组计划及其分子生物学研究进展[J].南京林业大学学报(自然科学版),2009,33(01):131.[doi:10.3969/j.jssn.1000-2006.2009.01.028]
 CHENG Qiang,PAN Hui xin,XU Li an,et al.The poplar genome project and progress in poplar molecular biology studies[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):131.[doi:10.3969/j.jssn.1000-2006.2009.01.028]
[6]薛丹,陈金林*,于彬,等.杨树苗木配方施肥试验[J].南京林业大学学报(自然科学版),2009,33(05):037.[doi:10.3969/j.jssn.1000-2006.2009.05.008]
 XUE Dan,CHEN Jin lin*,YU Bin,et al.Study on formulated fertilization for poplar seedling[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):037.[doi:10.3969/j.jssn.1000-2006.2009.05.008]
[7]宋微,吴小芹*,叶建仁.江苏几种杨树优良外生菌根真菌的筛选[J].南京林业大学学报(自然科学版),2009,33(02):081.[doi:10.3969/j.jssn.1000-2006.2009.02.020]
 SONG Wei,WU Xiao qin*,YE Jian ren.Screening elite ectomycorrhizal fungi for poplars in Jiangsu[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):081.[doi:10.3969/j.jssn.1000-2006.2009.02.020]
[8]陆叶,席梦利,郑佳,等.杨树和杉木茎段组织的冰冻切片技术研究[J].南京林业大学学报(自然科学版),2009,33(06):044.[doi:10.3969/j.jssn.1000-2006.2009.06.010]
 LU Ye,XI Meng li,ZHENG Jia,et al.Cryosection technique developed for stem tissue gene expression research on poplar and Chinese fir[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(01):044.[doi:10.3969/j.jssn.1000-2006.2009.06.010]
[9]刘菁菁,戴晓港,王洁,等.杨树微卫星序列对基因表达频率的影响及表达序列中微卫星特征的分析[J].南京林业大学学报(自然科学版),2011,35(01):011.[doi:10.3969/j.jssn.1000-2006.2011.01.003]
 LIU Jingjing,DAI Xiaogang,WANG Jie,et al.Effect of microsatellites on gene expression level and characteristics of expressed SSRs in poplars[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(01):011.[doi:10.3969/j.jssn.1000-2006.2011.01.003]
[10]芮雯奕,李淑琴,张纪林,等.苏北海堤基干林带杨树-刺槐混交林竞争效应研究[J].南京林业大学学报(自然科学版),2011,35(01):039.[doi:10.3969/j.jssn.1000-2006.2011.01.009]
 RUI Wenyi,LI Shuqin,ZHANG Jilin,et al.Competition effect of Populus and Robinia pseudoacacia mixed forest in the coastal trunk shelterbelt in northern Jiangsu province[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(01):039.[doi:10.3969/j.jssn.1000-2006.2011.01.009]

备注/Memo

备注/Memo:
收稿日期:2018-07-26 修回日期:2019-09-12基金项目:国家重点研发计划(2016YFD0600401); “十二五”国家科技支撑计划农村领域项目(2015BAD09B02); 山东省重点研发计划(2017GNC11115)。第一作者:董玉峰(dongyf719@163.com), 高级工程师。*通信作者:王延平(wangyp@ sdau.edu.cn), 教授, ORCID(0000-0002-1757-3003)。
更新日期/Last Update: 2020-01-15