[1]郭芳芸,曹 兵䥺Symbolj@@,宋丽华,等.CO2浓度升高对宁夏枸杞果实发育期形态指标及糖分积累影响[J].南京林业大学学报(自然科学版),2020,44(01):105-110.[doi:10.3969/j.issn.1000-2006.201901024]
 GUO Fangyun,CAO Bing*,SONG Lihua,et al.Effects of elevated CO2 concentration on Lycium barbarum fruit morphological parameters and sugar accumulation during development period in Ningxia[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(01):105-110.[doi:10.3969/j.issn.1000-2006.201901024]
点击复制

CO2浓度升高对宁夏枸杞果实发育期形态指标及糖分积累影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年01期
页码:
105-110
栏目:
研究论文
出版日期:
2020-01-15

文章信息/Info

Title:
Effects of elevated CO2 concentration on Lycium barbarum fruit morphological parameters and sugar accumulation during development period in Ningxia
文章编号:
1000-2006(2020)01-0105-06
作者:
郭芳芸曹 兵䥺Symbolj@@宋丽华哈 蓉
(宁夏大学农学院,宁夏 银川 750021)
Author(s):
GUO FangyunCAO Bing*SONG LihuaHA Rong
(School of Agriculture,Ningxia University,Yinchuan 750021,China)
关键词:
CO2浓度 宁夏枸杞 形态指标 糖分积累
Keywords:
CO2 concentration Lycium barbarum L. morphological indexes sugar accumulation
分类号:
S567.19
DOI:
10.3969/j.issn.1000-2006.201901024
文献标志码:
A
摘要:
【目的】探究正常大气CO2浓度升高对宁夏枸杞果实发育期形态及发育期蔗糖、果糖、葡萄糖等糖分积累过程的影响,以期为气候变化对果实发育期糖分积累影响提供参考。【方法】以宁夏枸杞苗木为试材,采用开顶气室模拟控制3个CO2浓度:正常大气CO2浓度[(380±20)μmol/mol,CK]作为对照,0.5倍增浓度[(570±20)μmol/mol,TR1],1倍增浓度[(760±20)μmol/mol,TR2]; 分别取经不同CO2浓度处理的宁夏枸杞果实幼果期至成熟期果品,测定其形态指标及不同发育期含糖量。【结果】TR1、TR2处理的宁夏枸杞果实较CK处理,在幼果期、青果期单果质量,以及横径均显著上升。青果期,其纵径、淀粉及果糖含量较CK处理显著增加。至成熟期,果实横径显著增大,蔗糖含量显著上升,单果纵径/横径显著下降,而果糖、葡萄糖、淀粉含量处理间无显著差异; TR1、TR2处理宁夏枸杞果实较CK处理在转色期蔗糖、淀粉质量比显著上升,初熟期显著下降,成熟期极显著上升; CO2浓度升高处理使宁夏枸杞果实在青果期单果质量与淀粉含量、转色期单果质量与果糖含量、转色期蔗糖与淀粉含量、成熟期单果质量与蔗糖含量间均达显著正相关。【结论】CO2浓度升高可显著促进宁夏枸杞在幼果期、青果期的果实横径、单果质量,使其青果期纵径及果糖、淀粉含量显著增加,处理至成熟期,可使宁夏枸杞果实单果质量、蔗糖含量显著上升,纵径/横径显著下降,影响果实发育过程中淀粉和蔗糖的积累过程。
Abstract:
【Objective】 To explore the effects of elevated atmospheric CO2 on the morphological appearance and levels of sucrose, fructose, and glucose in Lycium barbarum fruits during the developmental period, and provide a reference for the impact of climate change on sugar accumulation during fruit development.【Method】 L. barbarum fruits, as test materials, CO2 concentration was controlled by open-top chamber(OTC)to simulate the natural environment: ambient [(380±20)μmol/mol, CK], increased [(570±20 μmol/mol, TR1], and double ambient CO2 concentration [(760±20)μmol/mol, TR2]. Samples from the young fruit stage to the mature stage of L. barbarum were exposed to different CO2 concentrations, and the morphological indexes and sugar content at the developmental phase were tested.【Result】Single fruit weight and the transverse diameter of TR1 and TR2 were increased significantly in the young fruit and green fruit under elevated CO2 concentration; moreover, the longitudinal diameter, and fructose and starch content increased significantly in the green fruits. Sucrose content in the ripened samples increased significantly in TR1 and TR2 compared to CK, although the transverse diameter remained the same, whereas, the ratio of longitudinal diameter to transverse diameter for single fruit was inverse, and there was no difference in fructose, glucose and starch mass levels. Sucrose to starch ratio in the colored, initial maturity and mature phase among the three treatments was disparate. Significant stimulative correlations were indicated in single fruit weight of green fruits and starch, single fruit weight of colored fruits and fructose, single fruit weight of mature fruits and sucrose content under elevated CO2, as well as sucrose and starch content in colored fruits.【Conclusion】Based on the analyses, it can be concluded that elevated CO2 increased the transverse diameter and weight of a single fruit of L. barbarum in young fruit and green fruit phase, facilitated the fructose and starch content in green fruit phase, and changed the process of sucrose and starch accumulation during fruit development. The single fruit weight and sucrose content of L. barbarum were improved in mature fruits under elevated CO2

参考文献/References:


[1] PACHAURI R K, MEYER L A,et al. Climate change 2014: synthesis Report. Contribution of working groups I,II and III to the fifth assessment report of the intergovernmental panel on climate change[R].Switzerland:IPCC,2014.
[2] 韩会庆,张娇艳,马庚,等.气候变化对生态系统服务影响的研究进展[J].南京林业大学学报(自然科学版),2018,42(2): 184-190.HAN H Q,ZHANG J Y,MA G,et al. Advances on impact of climate change on ecosystem services[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2018,42(2): 184-190. DOI: 10.3969 / j.issn.1000-2006.201706007.
[3] MARTÍNEZ-LÜSCHER J, MORALES F,SÁNCHEZ-DÍAZ M,et al. Climate change conditions(elevated CO2 and temperature)and UV-B radiation affect grapevine(Vitis vinifera cv. Tempranillo)leaf carbon assimilation,altering fruit ripening rates[J]. Plant Science,2015,236:168-176. DOI: 10. 1016/j.plantsci.2015.04.001.
[4] DIER MARKUS,SICKORA JAN,ERBS MARTIN,et al. Decreased wheat grain yield stimulation by free air CO2 enrichment under N deficiency is strongly related to decreased radiation use efficiency enhancement [J]. European Journal of Agronomy, 2018(101):38-48. DOI:10.1016/j.eja.2018.08.007.
[5] WANG Z,PAN Q,QUEBEDEAUX B. Carbon partitioning into sorbitol,sucrose,and starch in source and sink apple leaves as affected by elevated CO2[J].Environmental and Experimental Botany,1999,1(41):39-46. DOI:10.1016/S0098-8472(98)00054-9.
[6] SALEH A M,SELIM S,JAOUNI S A,et al.CO2 enrichment can enhance the nutritional and health benefits of parsley(Petroselinum crispum L.)and dill (Anethum graveolens L.)[J]. Food Chemistry,2018,269:519-526. DOI:10.1016/j.foodchem.2018.07.046.
[7] DONG J L,LI X,CHU W Y,et al. High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2[J].Scientia Horticulturae,2017,218:275-283. DOI:10.1016/j.scienta.2016.11.026.
[8] SONG M B,TANG L P,ZHANG X L,et al. Effects of high CO2 treatment on green-ripening and peel senescence in banana and plantain fruits[J]. Journal of Integrative Agriculture, 2015,14(5): 875-887. DOI:10.1016/S2095-3119(14)60851-0.
[9] KE D Y,GOLDSTEIN L,O'MAHONY M,et al. Effects of short-term exposure to low O2 and high CO2 atmospheres on quality attributes of strawberries[J].Journal of Food Science,1991,56(1):50-54. DOI:10.1111/j.1365-2621.1991.tb07973.x.
[10] 韩雪.CO2浓度升高对冬小麦生长和产量影响的生理基础[D].北京:中国农业科学院,2012,6.HAN X. Effects of free air CO2 enrichment on wheat growth and yield:The physiological basis[D].Beijing:Chinese Academy of Agricultural Sciences Dissertation,2012,6.
[11] 王益民,张珂, 许飞华,等.不同品种枸杞子营养成分分析及评价[J].食品科学,2014,35(1):34-38.WANG Y M,ZHANG K,XU F H,et al. Chemical analysis and nutritional evaluation of different varieties of Goji berries(Lycium barbarum L.)[J].Food Science,2014,35(1):34-38. DOI:10.7506/spkx1002-6630-201401007.
[12] 汪燕平.清以来宁夏枸杞作为地道药材的形成史[J].史林,2017(3):67-76,220.WANG Y P. Changes of origin of authentic traditional medicinal herbs and the socio-cultural reconstruction: the case of ningxia gouqi,or Lycium barbarum[J].Historical Review,2017(3):67-76,220.DOI:CIVKI:SUN:LWBI.0.2017-03-009.
[13] 马国飞,张磊,王静,等.不同产地‘澳洲青苹'果实形态及品质特征的比较分析[J].经济林研究,2016,34(4): 117-122.MA G F,ZHANG L,WANG J,et al. Comparisons of forms and qualities of ‘Granny Smith'fruits from different habitats[J]. Non-wood Forest Researches,2016,34(4): 117-122. DOI:10.14067/j.cnki.1003-8981.2016.04.021.
[14] 林玲,孙光明,李绍鹏,等.园艺植物果实中糖代谢的研究进展[J].华南热带农业大学学报,2005,11(4):37-41.LIN L,SUN G M,LI S P,et al. Research progress on sugar metabolism in horticultural plant fruits[J].Journal of South China University of Tropical Agriculture,2005,11(4):37-41. DOI:10.3969/j.issn.1674-7054.2005.04.009.
[15] 张友杰.以蒽酮分光光度法测定果蔬中的葡萄糖、果糖、蔗糖和淀粉[J].分析化学,1977(5)3:167-171.ZHANG Y J. Determination of glucose, fructose,sucrose and starch in fruits and vegetables by anthrone spectrophotometry[J].Chinese Journal of Analytical Chemistry,1977(5)3:167-171.DOI:CNKI:SUN:FXHX.0.1977-03-001.
[16] 陶然,任国慧,朱旭东,等.葡萄果实发育阶段糖代谢与淀粉代谢的研究[J].园艺学报,2013,40(S):2595.TAO R,REN G H,ZHU X D,et al. Study on sugar metabolism and starch metabolism in grape fruit development stage[J].Acta Horticulturae Sinica,2013,40(S):2595.
[17] HARKER F R,ELGAR H J,WATKINS C B,et al. Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments[J].Postharvest Biology and Technology,2000,19(2):139-146. DOI:10.1016/S0925-5214(00)00090-9.
[18] MATHOOKO F M. Regulation of respiratory metabolism in fruits and vegetables by carbon dioxide[J].Postharvest Biology and Technology, 1996, 9(3):247-264. DOI:10.1016/S0925-5214(96)00019-1.
[19] 于年文,李俊才,王家珍,等.果实糖代谢及调控因子的研究进展[J].江西农业科学,2011,23(3):40-44,48.YU N W,LI J C,WANG J Z,et al. Research progress in sugar metabolism and its regulatory factors in fruits[J].Acta Agriculturae Jiangxi,2011,23(3): 40-44,48. DOI:10.19386/j.cnki.jxnyxb.2011.03.013.
[20] 李芋萱,曾凯芳,王宝刚,等.不同处理对采后果实糖代谢过程影响研究进展[J].食品科学,2015,36(5):283-288.LI Y X,ZENG K F,WANG B G,et al. Advances in regulation of sugar metabolism in postharvest fruits by different treatments[J].Food Science,2015,36(5):283-288. DOI:10.7506/spkx1002-6630-201505050.
[21] 武维华.植物生理学[M].北京:科学出版社,2003:177-186.
[22] 房经贵,朱旭东,贾海锋,等.植物蔗糖合酶生理功能研究进展[J].南京农业大学学报,2017,40(5): 759-768.FANG J G,ZHU X D,JIA H F,et al. Research advances on physiological function of plant sucrose synthase[J].Journal of Nanjing Agricultural University,2017,40(5): 759-768. DOI:10.7685/jnau.201706003.
[23] 张海英,韩涛,许丽,等.果实的风味构成及其调控[J].食品科学,2008,29(4):464-469. ZHANG H Y,HAN T,XU L,et al. Flavor constituents of fruits and its regulation [J].Food Science,2008,29(4):464-469. DOI:10.3321/j.issn: 1002-6630.
[24] 刘毓璟,张雁南,曹兵.增施CO2对宁夏枸杞夏果秋果蔗糖代谢酶活性的影响[J].西北林学院学报,2016,31(4):44-47,105.LIU Y J,ZHANG Y N,CAO B. Effects of high atmospheric CO2 concentrations on activities of sucrose metabolism-related enzymes in Lycium barbarum fruit[J].Journal of Northwest Forestry University,2016,31(4):44-47,105. DOI:10.3969/j.issn.1001-7461.2016.04.08.
[25] MOORE B,PALMQUIST D E,SEEMANN J R. Influence of plant growth at high CO2 concentrations on leaf content of ribulose-1,5-bisphosphate carboxylase/oxygenase and intracellular distribution of soluble carbohydrates in tobacco,snapdragon,and rparsley[J].Plant Physiology,1997,115(1): 241-248. DOI:10.1104/pp.115.1.241.
[26] ARANJUELO I,CABRERA-BOSQUET L,MORCUENDE R,et al. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2 [J].Journal of Experimental Botany,2011,62(11):3957-3969. DOI:10.1093/jxb/err095.
[27] BODELÓN O G,BLANCH M,SANCHEZ-BALLESTA M T,et al. The effects of high CO2 levels on anthocyanin composition,antioxidant activity and soluble sugar content of strawberries stored at low non-freezing temperature[J].Food Chemistry,2010,122(3): 673-678. DOI:10.1016/j.foodchem.2010.03.029.

相似文献/References:

[1]张 韫,崔晓阳*.高浓度CO2对红松幼苗及土壤碳氮特征的影响[J].南京林业大学学报(自然科学版),2016,40(01):027.[doi:10.3969/j.issn.1000-2006.2016.01.005]
 ZHANG Yun,CUI Xiaoyang*.Effects of higher CO2 concentration on carbon and nitrogen characteristicsof Pinus koraiensis seedling and its soil in an experimental environment[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(01):027.[doi:10.3969/j.issn.1000-2006.2016.01.005]

备注/Memo

备注/Memo:
收稿日期:2019-01-19 修回日期:2019-04-26基金项目:国家自然科学基金项目(31660199)。第一作者:郭芳芸(2406658613@qq.com)。*通信作者:曹兵(bingcao2006@126.com),教授,ORCID(0000-0002-0310-672X)。
更新日期/Last Update: 2020-01-15