[1]田雪瑶,周 洁,王保松,等.柳树NAC基因的克隆与表达模式分析[J].南京林业大学学报(自然科学版),2020,44(01):119-124.[doi:10.3969/j.issn.1000-2006.201905031]
 TIAN Xueyao,ZHOU Jie,WANG Baosong,et al.Cloning and expression pattern analysis of NAC genes in Salix[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(01):119-124.[doi:10.3969/j.issn.1000-2006.201905031]
点击复制

柳树NAC基因的克隆与表达模式分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年01期
页码:
119-124
栏目:
研究论文
出版日期:
2020-01-15

文章信息/Info

Title:
Cloning and expression pattern analysis of NAC genes in Salix
文章编号:
1000-2006(2020)01-0119-06
作者:
田雪瑶12周 洁23王保松23何开跃1*何旭东23*
(1.南京林业大学生物与环境学院,江苏 南京 210037; 2. 江苏省林业科学研究院,江苏 南京 211153; 3. 江苏省农业种质资源保护与利用平台柳树资源圃,江苏 南京 211153)
Author(s):
TIAN Xueyao12 ZHOU Jie23 WANG Baosong23 HE Kaiyue1* HE Xudong23*
(1.College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Jiangsu Academy of Forestry, Nanjing 211153, China; 3. Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 211153, China)
关键词:
柳树 NAC基因家族 基因克隆 基因表达
Keywords:
Salix NAC gene family gene cloning gene expression
分类号:
S785.5; Q786
DOI:
10.3969/j.issn.1000-2006.201905031
文献标志码:
A
摘要:
【目的】研究柳树重要抗逆转录因子基因家族,为揭示柳树抗逆分子机制提供理论依据。【方法】以‘苏柳2345'的转录组测序数据为基础,克隆了柳树NAC家族,并分析其序列结构、组织表达特异性以及不同胁迫条件下的表达模式。【结果】克隆的两个柳树NAC转录因子基因分别命名为SlNAC1和SlNAC2。生物信息学分析表明:SlNAC1序列全长为1 126 bp,编码产物含343个氨基酸残基,为稳定的亲水蛋白,定位于细胞核; SlNAC2序列全长为1 139 bp,编码产物含291个氨基酸残基,为稳定的亲水蛋白,定位于叶绿体。两个基因均具有典型的NAM结构域及A、B、C、D、E 5个亚结构域,还包括共同的LPPG、YPNG 和DEE保守基序及NAC抑制结构域。系统进化树分析显示,SlNAC1基因与木薯亲缘关系最近,SlNAC2基因与茄子亲缘关系最近。定量PCR结果显示SlNAC1和SlNAC2均在叶片表达,根中没有表达,为叶片特异性转录因子。定量PCR结果显示SlNAC1基因在脱落酸(ABA)和赤霉素(GA)处理24 h后显著上调,SlNAC2基因在聚乙二醇(PEG)、ABA和GA胁迫后显著上调。【结论】柳树SlNAC1基因在非生物胁迫下表达较为稳定,受ABA和GA胁迫诱导; SlNAC2受干旱、ABA和GA胁迫诱导,受影响明显高于SlNAC1,不受乙烯剂(ETH)胁迫影响。推测SlNAC1和SlNAC2参与GA、ABA信号传导,可能不参与ETH的信号途径。
Abstract:
【Objective】NAC transcription factors play an important role in regulating plant growth, development and response to stress tolerance. Studying the sequence, structure, evolutionary relationship and expression pattern of NAC transcription factor gene family related with stress tolerance in willow will have important theoretical significance for understanding the molecular mechanism underlying stress tolerance, which in turn will provide a theoretical basis for molecular assisted breeding in future. 【Method】 Two members of the NAC gene family were cloned based on the RNA-seq data of the Salix × jiangsuensis ‘J2345' variety. The gene structure, protein properties and gene phylogeny were analyzed by using bioinformatics. The tissue specific expression in leaf and root, as well as the expression patterns under different types of stress was detected by quantitative real time PCR. 【Result】 The two NAC transcription factors cloned from the leaves of Salix × jiangsuensis ‘J2345' variety were named SlNAC1 and SlNAC2. Bioinformatics analysis results showed that the sequence lengths of SlNAC1 and SlNAC2 were 1 126 bp and 1 139 bp, encoding proteins with 343 and 291 amino acid residues, respectively. The molecular weight of the proteins expressed from the two SlNAC1 and SlNAC2 genes were 40.1 ku and 42.3 ku, respectively, and both were stable, hydrophilic proteins. The SlNAC1 gene was located in nucleus while the SlNAC2 gene was located in chloroplast. Sequence alignment showed that both the genes contained typical NAM domains as well as A, B, C, D and E sub-domains, which shared the LPPG, YPNG and DEE conservative motifs and NAC suppression domains. Phylogenetic analysis demonstrated that SlNAC1 and SlNAC2 shared the highest homology with the genes from Manihot esculenta and Solanum melongena, respectively. RT-PCR results showed that both SlNAC1 and SlNAC2 were expressed in leaves and not in roots. The results of qRT-PCR showed that SlNAC1 was significantly upregulated after 24 hours of abscisic acid(ABA)and gibberellins(GA)treatments. SlNAC2 was significantly upregulated after exposure to polyethylene glycol(PEG), ABA and GA stresses. 【Conclusion】 The transcription factor SlNAC1 can be induced by induced by ABA and GA, and could stably express under abiotic stress. SlNAC2 can be induced by PEG, ABA and GA rather than ethrel(ETH), at a significantly higher expression level than SlNAC1. Therefore, we speculated that SlNAC1 and SlNAC2 were involved in GA and ABA signal transduction, but not in the ETH signaling pathway

参考文献/References:


[1] SINGH K, FOLEY R C, ONATE-SANCHEZ L. Transcription factors in plant defense and stress responses [J]. Current Opinion in Plant Biology, 2002, 5(5):430-436. DOI:10.1016/s1369-5266(02)00289-3.
[2] ERNST H A, OLSEN N A, SKRIVER K, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors [J]. EMBO Reports, 2004, 5(3):297-303. DOI:10.1038/sj.embor.7400093.
[3] DUVAL M, HSIEH T F, KIM S Y, et al. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily [J]. Plant Molecular Biology, 2002, 50(2):237-248. DOI: 10.1023/a: 1016028530943.
[4] OOKA H, SATOH K, DOI K,et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Research, 2003, 10(6):239-247. DOI:10.1093/dnares/10.6.239.
[5] SHEN H, YIN Y B, CHEN F,et al. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production [J]. BioEnergy Research, 2009, 2(4):217-232. DOI:10.1007/s 12155-009-9047-9.
[6] PURANIK S, SAHU P P, SRIVASTAVA P S, et al. NAC proteins: regulation and role in stress tolerance [J]. Trends in Plant Science, 2012, 17(6):369-381. DOI:10.1016/j.tplants.2012.02.004.
[7] JENSEN M K, SKRIVER K. NAC transcription factor gene regulatory and protein-protein interaction networks in plant stress responses and senescence [J]. IUBMB Life, 2014, 66(3):156-166. DOI:10.1002/iub. 1256.
[8] XUE G P, WAY H M, RICHARDSON T, et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat [J]. Molecular Plant, 2011, 4(4):697-712. DOI:10.1093/mp/ssr013.
[9] YANG R C, DENG C T, OUYANG B, et al. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato [J]. Molecular Biology Reports, 2011, 38(2):857-863. DOI:10.1007/ s11033-010-0177-0.
[10] MAO X G, ZHANG H Y, QIAN X Y, et al. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis [J]. Journal of Experimental Botany, 2012, 63(8):2933-2946. DOI:10.1093/jxb/err462.
[11] GAO F, XIONG A S, PENG R H, et al. OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants [J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2010, 100(3):255-262. DOI:10.1007/s11240-009-9640-9.
[12] KIM S Y, KIM S G, KIM Y S, et al. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation [J]. Nucleic Acids Research, 2007, 35(1):203-213. DOI:10.1093/nar/gkl1068.
[13] SHAN W, KUANG J F, CHEN L, et al. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening [J]. Journal of Experimental Botany, 2012, 63(14):5171-5187. DOI:10.1093/jxb/ers178.
[14] DELESSERT C,KAZAN K, WILSON I W, et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. The Plant Journal, 2005, 43(5):745-757. DOI:10.1111/j.1365-313x.2005.02488.x.
[15] YOSHII M, YAMAZAKI M, RAKWAL R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling [J]. The Plant Journal, 2010, 61(5):804-815. DOI:10.1111/j.1365-313x.2009. 04107.x.
[16] KIM S G, LEE A K, YOON H K, et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination [J]. The Plant Journal, 2008, 55(1):77-88. DOI:10.1111/j.1365-313x.2008.03493.x.
[17] RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499):2105-2110. DOI:10.1126/science.290. 5499.2105.
[18] HAN X J, HE G, ZHAO S T, et al. Expression analysis of two NAC transcription factors PtNAC068 and PtNAC154 from Poplar [J]. Plant Molecular Biology Reporter, 2012, 30(2):370-378. DOI:10.1007/s11105-011-0350-1.
[19] OLSEN A N, ERNST H A, LEGGIO L L, et al. NAC transcription factors: structurally distinct, functionally diverse [J]. Trends in Plant Science, 2005, 10(2):79-87. DOI:10.1016/j.tplants.2004.12.010.
[20] RUSHTON P J, BOKOWIEC M T, HAN S C,et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae [J]. Plant Physiology, 2008, 147(1):280-295. DOI:10.1104/pp. 107.114041.
[21] NURUZZAMAN M, MANIMEKALAI R, SHARONI A M, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2):30-44. DOI:10.1016/j.gene.2010.06.008.
[22] SHAH S T, PANG C Y, HUSSAIN A, et al. Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L. [J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2014, 117(2):167-186. DOI:10.1007/s11240-014-0430-7.
[23] ZHANG C, ZHANG L, ZHANG S, et al. Global analysis of gene expression profiles in physic nut(Jatropha curcas L.)seedlings exposed to drought stress [J]. BMC Plant Biology, 2015, 15(1):17. DOI:10.1186/s12870-014-0397-x.
[24] HU R B, QI G, KONG Y Z, et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa [J]. BMC Plant Biology, 2010, 10(1):145. DOI:10.1186/1471-2229-10-145.
[25] XU Z Y, GONGBUZHA X I, WANG C Y, et al. Wheat NAC transcription factor TaNAC29 is involved in response to salt stress [J]. Plant Physiology and Biochemistry, 2015, 96:356-363. DOI:10.1016/j.plaphy. 2015.08.013.
[26] JEONG J S, KIM Y S, REDILLAS M C F R, et al. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field [J]. Plant Biotechnology Journal, 2013, 11(1):101-114. DOI:10.1111/pbi.12011.
[27] 刘旭, 李玲. 花生NAC转录因子AhNAC2和AhNAC3的克隆及转录特征[J]. 作物学报, 2009, 35(3):541-545.LIU X, LI L. Cloning and characterization of the NAC-like geneAhNAC2 and AhNAC3 in Peanut [J]. Acta Agronomica Sinica, 2009, 35(3):541-545. DOI:10.3724/SP.J.1006.2009.00541.
[28] 唐宽刚, 任美艳, 张文君, 等. 沙冬青AmNAC6基因的克隆与功能初步分析[J]. 植物科学学报, 2018, 36(5):705-712. TANG K G, REN M Y, ZHANG W J, et al. Cloning and preliminary functional analysis of AmNAC6 from Ammopiptanthus mongolicus [J]. Plant Science Journal, 2018, 36(5):705-712. DOI: 10.11913/PSJ.2095-0837.2018.50705.
[29] 武肖琦, 冯涛, 刘艳军, 等. 桃PpNAC72的克隆及表达分析[J]. 生物技术通报, 2019, 35(6):1-8. WU X Q, FENG T, LIU Y J, et al. Cloning and expression analysis of the PpNAC72 in peach [J]. Biotechnology Bulletin, 2019, 35(6):1-8. DOI:10. 13560/j.cnki.biotech.bu11.1985.2018-0891.
[30] TIAN X Y, ZHENG J W, JIAO Z Y, et al. Transcriptome sequencing and EST-SSR marker development in Salix babylonica and S. suchowensis [J]. Tree Genetics & Genomes, 2019, 15:9. DOI:10.1007/s11295-018-1315-4.
[31] ZHENG X N, CHEN B, LU G J, et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance [J]. Biochemical and Biophysical Research Communications, 2009, 379(4):985-989. DOI:10.1016/j.bbrc.2008.12.163.
[32] 邵帅, 徐岭贤, 王绍辉, 等. 茄子SmNAC1基因的克隆与表达分析[J]. 园艺学报, 2014, 41(5):975-984. SHAO S, XU L X, WANG S H, et al. Cloning and expression analysis of SmNAC1 in Solanum melongena [J]. Acta Horticulturae Sinica, 2014, 41(5):975-984. DOI:10.16420/j.issn.0513-353x.2014.05.020.
[33] 姜秀明, 牛义岭, 徐向阳. 番茄NAC基因家族的系统进化及表达分析[J]. 分子植物育种, 2016, 14(8):1948-1964. JIANG X M, NIU Y L, XU X Y. Phylogenetic evolution and expression analysis of NAC gene family in tomato(Solanum lycopersicum)[J]. Molecular Plant Breeding, 2006, 14(8):1948-1964. DOI:10.13271/j.mpb.014.001948.
[34] 丁泽红, 颜彦, 付莉莉, 等. 木薯NAC转录因子Rd26基因克隆及表达[J]. 南方农业学报, 2016, 47(11):1822-1826.DING Z H, YAN Y, FU L L, et al. Clone and expression of NAC transcription factor Rd26 gene from Manihot esculenta Crantz [J]. Journal of Southern Agriculture, 2016, 47(11):1822-1826. DOI:10.3969/jissn.2095-1191.2016.11.1822.
[35] FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. The Plant Journal, 2004, 39(6):863-876. DOI:10.1111/ j.1365-313x.2004.02171.x.

相似文献/References:

[1]戴前莉,李金花*,胡建军,等.增施铁对镉胁迫下柳树生长及光合生理性能的改善[J].南京林业大学学报(自然科学版),2017,41(02):063.[doi:10.3969/j.issn.1000-2006.2017.02.010]
 DAI Qianli,LI Jinhua*,HU Jianjun,et al.Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(01):063.[doi:10.3969/j.issn.1000-2006.2017.02.010]

备注/Memo

备注/Memo:
收稿日期:2019-05-22 修回日期:2019-06-10基金项目:国家自然科学基金项目(31300556); 江苏省林业科学研究院自主科研项目(BM2018022-01)。第一作者:田雪瑶(xyt8389@qq.com),负责实验与数据分析,论文初稿写作; 周洁(411525402@qq.com),负责实验操作与结果分析。*通信作者:何旭东(hxd_519@163.com),副研究员,负责实验设计与论文修改, ORCID(0000-0001-6644-928X); 何开跃(1940557508@qq
更新日期/Last Update: 2020-01-15