[1]车 通,罗云建,*.量化社会经济发展对城市景观破碎化的影响[J].南京林业大学学报(自然科学版),2020,44(01):154-162.[doi:10.3969/j.issn.1000-2006.201807016]
 CHE Tong,LUO Yunjian,*.Quantifying effects of socioeconomic development on urban landscape fragmentation[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(01):154-162.[doi:10.3969/j.issn.1000-2006.201807016]
点击复制

量化社会经济发展对城市景观破碎化的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年01期
页码:
154-162
栏目:
研究论文
出版日期:
2020-01-15

文章信息/Info

Title:
Quantifying effects of socioeconomic development on urban landscape fragmentation
文章编号:
1000-2006(2020)01-0154-09
作者:
车 通1罗云建1 2*
(1.扬州大学园艺与植物保护学院,扬州大学生物科学与技术学院,江苏 扬州 225009; 2.中国科学院生态环境研究中心城市与区域国家重点实验室,北京 100085)
Author(s):
CHE Tong1 LUO Yunjian1 2 *
(1. College of Horticulture and Plant Protection, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; 2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
关键词:
城市化 景观破碎化 空间格局 社会经济发展 扬州市
Keywords:
urbanization landscape fragmentation spatial pattern socioeconomic development Yangzhou City
分类号:
S731.2; Q14
DOI:
10.3969/j.issn.1000-2006.201807016
文献标志码:
A
摘要:
【目的】以扬州市为例,分析城市景观破碎化的空间格局,定量研究社会经济因素对景观破碎化的影响及该影响的相对重要性。【方法】利用空间分辨率30 m的Landsat卫星影像、乡镇层次的扬州统计年鉴等数据,运用景观格局分析法、增强回归树模型(boosted regression trees, BRT)等方法,开展景观破碎化空间格局及社会经济驱动的研究。【结果】①扬州的土地利用类型以耕地为主,占全市总面积的54.9%,其次为水体(22.0%)和建设用地(21.9%),林地和草地很少(1.1%)。距离市中心越远,景观破碎化程度越高,在城区边缘达到峰值,而后随着距离的继续增大,破碎化程度逐渐减小。②随着城市化水平的增加,景观破碎化程度呈先增加后减小的趋势,其在城市化水平35%~45%时达到峰值。③在景观水平上,社会因子(人口数量和人口密度)对景观破碎化的影响以抑制为主,而经济因子(人均GDP、人均财政收入、第一产业产值占比和第三产业产值占比)的影响以促进为主。与景观水平相比,社会经济因子在类型水平上对景观破碎化的影响更大,而且它们与破碎化不同特征(斑块密度、边缘密度、分离度和聚合度)的作用关系也存在明显差异,且主要体现在分离度和聚合度上,例如人均财政收入在景观水平上促进分离度的增加,在类型水平上却表现为抑制作用。【结论】社会经济发展对城市景观破碎化产生较大影响,不仅体现在不同的尺度(景观和类型水平)上,还体现在社会经济因子对破碎化特征不同的驱动作用(抑制或促进)上。因此,需要综合考虑社会经济发展对景观破碎化影响的尺度效应及作用强度与方向,有效缓解城市景观的破碎化,保障城市的生态安全和可持续发展。
Abstract:
【Objective】We analyzed spatial patterns of urban landscape fragmentation by taking Yangzhou City as a case study. Here, we further quantitatively explore the effects of socioeconomic factors on landscape fragmentation.【Method】Multi data sources(e.g., Landsat-5 TM imagery with 30 m spatial resolution, and the Statistical Yearbook of Yangzhou City)and several data analysis methods(e.g., landscape pattern analysis and the boosted regression trees machine learning technique)were employed.【Result】① Arable land was the dominant land use, covering 54.9% of the total area of the city in 2010, followed by water(22.0%), built-up land(21.9%), and forestland and grassland(1.1%). As the distance from the city center increased, the degree of landscape fragmentation first increased and then decreased, whereby the turning point was at the edge of the city. ② The degree of landscape fragmentation increased with increasing level of urbanization, and reached an extremum at 35%-45% before declining gradually. ③ At the landscape level, social factors(i.e., total population and population density)generally had an inhibiting role on landscape fragmentation, while economic factors(i.e., per capita GDP, per capita revenue, primary and tertiary industries)usually promoted landscape fragmentation. In comparison to landscape level, socioeconomic factors had greater impacts at the class-level, and their relationships with class-level fragmentation indices(patch density, edge density, landscape division index and aggregation index)showed distinct differences. For example, per capita revenue promoted the division of landscape at the landscape level, but inhibited it at class level.【Conclusion】Socioeconomic development played an important role in landscape fragmentation, not only at different levels(landscape and class levels), but also in terms of different driving roles(inhibition or promotion)of fragmentation indices. Therefore, it is necessary to consider the scale effect, impact intensity, and impact direction of socioeconomic factors in order to effectively alleviate urban landscape fragmentation

参考文献/References:


[1] KUANG W H, CHI W F, LU D S,et al. A comparative analysis of megacity expansions in China and the U.S.: patterns, rates and driving forces[J]. Landscape and Urban Planning, 2014, 132: 121-135. DOI: 10.1016/j.landurbplan.2014.08.015.
[2] REYNOLDS R, LIANG L, LI X,et al. Monitoring annual urban changes in a rapidly growing portion of Northwest Arkansas with a 20-year Landsat record[J]. Remote Sense, 2017, 9: 71. DOI: 10.3390/rs9010071.
[3] KADISH J, NETUSIL N R. Valuing vegetation in an urban watershed[J]. Landscape and Urban Planning, 2012, 104: 59-65. DOI: 10.1016/j.landurbplan.2011.09.004.
[4] 陈利顶, 孙然好, 刘海莲. 城市景观格局演变的生态环境效应研究进展[J]. 生态学报, 2013, 33(4): 1042-1050. CHEN L D, SUN R H, LIU H L. Eco-environmental effects of urban landscape pattern changes: progresses, problems, and perspectives[J]. Acta Ecologica Sinica, 2013, 33(4): 1042-1050.DOI: 10. 5846/stxb201205070659.
[5] WENG Y C. Spatiotemporal changes of landscape pattern in response to urbanization[J]. Landscape and Urban Planning, 2007, 81(4): 341-353. DOI: 10.1016/j.landurbplan.2007.01.009.
[6] 仇江啸, 王效科, 逯非, 等. 城市景观破碎化与城市化及社会经济发展水平的关系——以北京城区为例[J]. 生态学报, 2012, 32(9): 2659-2669. QIU J X, WANG X K, LU F,et al. The spatial pattern of landscape fragmentation and its relations with urbanization and socio-economic developments: a case study of Beijing[J]. Acta Ecologica Sinica, 2012, 32(9): 2659-2669. DOI: 10.5846/stxb201104010426.
[7] 阳文锐. 北京城市景观格局时空变化及驱动力[J]. 生态学报, 2015, 35(13): 4357-4366. YANG W R. Spatiotemporal change and driving forces of urban landscape pattern in Beijing[J]. Acta Ecologica Sinica, 2015, 35(13): 4357-4366. DOI: 10.5846/stxb201409231882.
[8] MATTHEW L, WU J G. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA[J]. Landscape Ecology, 2002, 17: 327-339. DOI: 10.1023/A:102051272.
[9] HEROLD M, SCEPAN J, CLARKE K C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses[J]. Environment and Planning A: Economy and Space, 2002, 34(8): 1443-1458. DOI: 10.1068/a3496.
[10] 臧淑英, 王凌云, 那晓东,等. 基于经济驱动因子的土地利用结构变化区域差异分析——以哈大齐工业走廊为例[J]. 地理研究, 2011, 30(2): 224-232. ZANG S Y, WANG L Y, NA X D, et al. Regional disparities analysis of land-use structure based on economic driving factor: taking Ha-Da-Qi Industrial Corridor as a case[J]. Geographical Research, 2011, 30(2): 224-232. DOI: 1000-0585(2011)02-0224-09.
[11] 潘竟虎, 苏有才, 黄永生, 等. 近30年玉门市土地利用与景观格局变化及其驱动力[J]. 地理研究, 2012, 31(9): 1631-1639. PAN J H, SU Y C, HUANG Y S,et al. Land use & landscape pattern change and its driving forces in Yumen City[J]. Geographical Research, 2012, 31(9): 1631-1639. DOI: 1000-0585(2012)09-1631-09.
[12] FAN Q D, DING S Y. Landscape pattern changes at a county scale: a case study in Fengqiu, Henan Province, China from 1990 to 2013[J]. CATENA, 2016, 137: 152-160. DOI: 10.1016/j.catena.2015.09.012.
[13] HASTIE T, TIBSHIRANI R, FRIEDMAN J. The Elements of Statistical Learning[M]. New York: Springer, 2009.
[14] 高晓俊. 基于情景规划的中小城市空间发展规划研究[D]. 合肥: 合肥工业大学, 2016. GAO X J. Based on the Scenario analysis of small and medium-sized city space development planning study[D]. Hefei: Hefei University of Technology, 2016.
[15] 齐杨,邬建国,李建龙,等. 中国东西部中小城市景观格局及其驱动力[J]. 生态学报, 2013, 33(1): 275-285. QI Y, WU J G, LI J L,et al. Landscape dynamics of medium-and small-sized cities in eastern and western China: a comparative study of pattern and driving forces[J]. Acta Ecologica Sinica, 2013, 33(1): 275-285. DOI: 10.5846/stxb201111091694.
[16] 蔡春菊, 贾宝全, 王成. 扬州地区土地利用与景观格局分析[J].东北林业大学学报, 2010, 38(4): 42-48. CAI C J, JIA B Q, WANG C. Land use and landscape patterns of Yangzhou City[J]. Journal of Northeast Forestry University, 2010, 38(4): 42-48.DOI: 10.13759/j.cnki.dlxb.2010.04.039.
[17] 徐连芳, 叶亚平. 扬州市湿地景观格局演变及驱动力研究[J]. 水生态学杂志, 2015, 36(3): 44-50. XU L F, YE Y P. Evolution of the wetland landscape pattern and its driving forces in Yangzhou[J]. Journal of Hydroecology, 2015, 36(3): 44-50.DOI: 10.15928/j.1674-3075.2015.03.007.
[18] 李栋科, 丁圣彦, 梁国付, 等. 基于移动窗口法的豫西山地丘陵地区景观异质性分析[J]. 生态学报, 2014, 34(12): 3414-3424. LI D K, DING S Y, LIANG G F,et al. Landscape heterogeneity of mountainous and hilly area in the western Henan Province based on moving window method[J]. Acta Ecologica Sinica, 2014, 34(12): 3414-3424.DOI: 10.5846/stxb201310282595.
[19] 王润, 丁圣彦, 卢训令, 等. 黄河中下游农业景观异质性对传粉昆虫多样性的多尺度效应——以巩义市为例[J]. 应用生态学报, 2016, 27(7): 2145-2153. WANG R, DING S Y, LU X L,et al. Multi-scale effects of landscape heterogeneity on pollinators' diversity in the middle and lower reaches of the Yellow River: a case in Gongyi, Henan, China [J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2145-2153.DOI: 10.13287/j.1001-9332.201607.020.
[20] MCGARIGAL K, MARKS B J. Fragstats: spatial pattern analysis program for quantifying landscape structure[R]. Portland, U.S: Gen/Tech/Report PNW-GTR-351, USDA Forest Service, Pacific Northwest Research Station, Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1995, 122. DOI: 10.2737/PNW-GTR-351.
[21] MCGARIGAL K, CUSHMAN S A, NEEL M C,et al. Fragstats: spatial pattern analysis program for categorical maps[CP/EB]. 2002.http://www.umass.edu/landeco/research/fragstats/fragstats.html.
[22] PICKETT S T, CADENASSO M L, GROVE J M, et al. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas[J]. Annual Review of Ecology and Systematics, 2001, 32: 127-157. DOI: 10.1146/annurev.ecolsys.32.081501.114012.
[23] 欧强新, 李海奎, 雷相东, 等. 基于清查数据的福建省马尾松生物量转换和扩展因子估算差异解析——3种集成学习决策树模型的比较[J]. 应用生态学报, 2018, 29(6): 2007-2016. OU Q X, LI H K, LEI X D,et al. Difference analysis in estimating biomass conversion and expansion factors of masson pine in Fujian Province, China based on national forest inventory data: a comparison of three decision tree models of ensemble learning[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 2007-2016.DOI: 10.13287/j.1001-9332.201806.019.
[24] MARTIN M P, WATTENBACH M, SMITH P, et al. Spatial distribution of soil organic carbon stocks in France[J]. Biogeosciences, 2011, 8: 1053-1065. DOI: 10.5194/bg-8-1053-2011.
[25] DANIEL M, PEDRO J L, THOMAS S. Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees[J]. Agricultural Systems, 2013, 117: 66-77. DOI: 10.1016/j.agsy.2012.12.010.
[26] 李春林, 刘淼, 胡远满, 等. 基于增强回归树和Logistic回归的城市扩展驱动力分析[J]. 生态学报, 2014, 34(3): 727-737. LI C L, LIU M, HU Y M,et al. Driving forces analysis of urban expansion based on boosted regression trees and Logistic regression[J]. Acta Ecologica Sinica, 2014, 34(3): 727-737.DOI: 10.5846/stxb201212121790.
[27] ELITH J, LEATHWICK J R, HASTIE T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77: 802-813. DOI: 10.1111/j.1365-2656.2008.01390.x.
[28] GAROUANI A E, MULLA D J, GAROUANI S E, et al. Analysis of urban growth and sprawl from remote sensing data: case of Fez, Morocco[J]. International Journal of Sustainable Built Environment, 2017, 6(1): 160-169. DOI: 10.1016/j.ijsbe.2017.02.003.
[29] 王蓉, 周宝同, 甘雪坤. 西南山地景观破碎化与城镇化及社会经济发展水平的关系研究——以重庆市渝北区为例[J]. 长江流域资源与环境, 2018, 27(3): 624-631. WANG R, ZHOU B T, GAN X K.Relationships between spatial pattern of landscape fragmentation and urbanization and socio-economic developmental level in Southwest Mountainous Region: a case study of Yubei District in Chongqing[J]. Resources and Environment in the Yangtze Basin, 2018, 27(3): 624-631. DOI: 10.11870/cjlyzyyhj201803018.
[30] PENG J, WANG Y L, ZHANG Y, et al. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns[J]. Ecological Indicators, 2010, 10(2): 217-223. DOI: 10.1016/j.ecolind.2009.04.017.
[31] 胡冬雪, 唐立娜, 邱全毅, 等. 海峡西岸经济区景观格局10年变化及驱动力[J]. 生态学报, 2015, 35(18): 6138-6147. HU D X, TANG L N, QIU Q Y,et al. Decadal temporal changes in landscapes and their driving forces for West-bank Economic Zone of Taiwan Straits[J]. Acta Ecologica Sinica, 2015, 35(18): 6138-6147. DOI: 10.5846/stxb201401180141.
[32] 向英奇, 刘淼, 胡远满, 等. 辽宁省沿海地区景观格局时空变化及其驱动力[J]. 生态学杂志, 2015, 34(9): 2628-2635. XIANG Y Q, LIU M, HU Y M, et al. Spatial and temporal change of landscape pattern and its driving force in Liaoning coastal regions[J]. Chinese Journal of Ecology, 2015, 34(9): 2628-2635. DOI: 1000-4890(2015)9-2628-08.
[33] LI C, LI J X, WU J G. What drives urban growth in China? A multi-scale comparative analysis[J]. Applied Geography, 2018, 98: 43-51. DOI: 10.1016/j.apgeog.2018.07.002.

相似文献/References:

[1]孔繁花,尹海伟.城市绿地功能的研究现状、问题及发展方向[J].南京林业大学学报(自然科学版),2010,34(02):119.[doi:10.3969/j.jssn.1000-2006.2010.02.028]
 KONG Fan hua,YIN Hai wei.Urban green space functions: present, problems and future[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(01):119.[doi:10.3969/j.jssn.1000-2006.2010.02.028]
[2]王祖华,刘红梅,关庆伟*,等.南京城市森林生态系统的碳储量和碳密度研究[J].南京林业大学学报(自然科学版),2011,35(04):018.[doi:10.3969/j.jssn.1000-2006.2011.04.004]
 WANG Zuhua,LIU Hongmei,GUAN Qingwei*,et al.Carbon storage and density of urban forest ecosystems in Nanjing[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(01):018.[doi:10.3969/j.jssn.1000-2006.2011.04.004]
[3]林丽,吴苏贤,高敏杰,等.江苏省快速城市化地区公路网发展趋势分析[J].南京林业大学学报(自然科学版),2006,30(S1):113.[doi:10.3969/j.jssn.1000-2006.2006.07.034]
 LIN Li,WU Su-xian,GAO Min-jie,et al.Trend of Road Network Development in Fast Urbanization Region of Jiangsu Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2006,30(01):113.[doi:10.3969/j.jssn.1000-2006.2006.07.034]

备注/Memo

备注/Memo:
收稿日期:2018-07-10 修回日期:2019-03-25基金项目:国家自然科学基金项目(31500388, 71533005); 城市与区域生态国家重点实验室开放基金项目(SKLURE2016-2-3); 中国博士后科学基金项目(2016M601144, 2017T100112)。第一作者:车通(tongche1995@sina.com)。*通信作者:罗云建(yjluo@yzu.edu.cn),副教授,博士,ORCID(0000-0002-7358-5797)。
更新日期/Last Update: 2020-01-15