[1]韩玉娜,张 瑜,金光泽.腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J].南京林业大学学报(自然科学版),2020,44(02):133-140.[doi:10.3969/j.issn.1000-2006.201812016]
 HAN Yuna,ZHANG Yu,JIN Guangze*.Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(02):133-140.[doi:10.3969/j.issn.1000-2006.201812016]
点击复制

腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年02期
页码:
133-140
栏目:
研究论文
出版日期:
2020-03-31

文章信息/Info

Title:
Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest
文章编号:
1000-2006(2020)02-0133-08
作者:
韩玉娜1 张 瑜1 金光泽12
(1.东北林业大学生态研究中心, 黑龙江 哈尔滨 150040; 2.东北林业大学森林生态系统可持续经营教育部重点实验室, 黑龙江 哈尔滨 150040)
Author(s):
HAN Yuna1 ZHANG Yu1 JIN Guangze12*
(1. Center for Ecological Research, Northeast Forestry University, Harbin 150040, China; 2. Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China)
关键词:
木质残体 含水率 木材密度 腐烂等级 径级 阔叶红松林
Keywords:
woody debris moisture content wood density decay classes diameter classes mixed broadleaved-Korean pine forest
分类号:
S791.247
DOI:
10.3969/j.issn.1000-2006.201812016
文献标志码:
A
摘要:
【目的】含水率和密度是木质残体重要的物理性质。为了更合理地评估森林生态系统养分含量和生产力变化,对阔叶红松林木质残体的含水率和密度进行研究。【方法】以东北典型阔叶红松林中主要树种红松、臭冷杉、枫桦、槭树、椴树、水曲柳、榆树的木质残体为研究对象,对5个腐烂等级(Ⅰ—Ⅴ)下的3个径级(ⅰ—ⅲ)进行取样,分析腐烂等级、径级、树种、结构组分(边材、心材)对木质残体含水率、密度的影响。【结果】随腐烂等级的增加,木质残体含水率显著增加,密度显著降低;除腐烂等级Ⅲ和总体木质残体边材密度显著高于心材外,其余腐烂等级木质残体含水率、密度在边材与心材之间均无显著差异;除腐烂等级Ⅰ的木质残体心材含水率外,其余腐烂等级木质残体边材、心材的含水率和密度在部分树种之间均有显著差异。木质残体含水率、密度在径级间均无显著差异;径级ⅰ的木质残体边材、心材含水率在部分树种间有显著差异,径级ⅰ、ⅲ的木质残体边材、心材的密度在部分树种间均有显著差异。【结论】受不同因素的影响,阔叶红松林木质残体的含水率、密度有不同的变化规律,且腐烂等级以及树种是导致木质残体分解过程中引起含水率、密度显著变化的重要因素
Abstract:
【Objective】Moisture content and wood density are important physical properties of woody debris. However, the effects of decay class and diameter class on the wood density and moisture content of the main species in a typical mixed broadleaf-Korean pine(Pinus koraiensis)forest remain unclear. This study provides basic data on the moisture content and wood density of sapwood and heartwood of the main tree species in a typical mixed broadleaf-Korean pine forest and examines the variation patterns of moisture content and wood density with decay class and diameter class. 【Method】 The main tree species, Pinus koraiensis, Abies nephrolepis, Betula costata, Acer spp., Tilia spp., Fraxinus mandshurica and Ulmus spp. in the mixed forest were chosen for this study. The study samples were divided into five decay classes(Ⅰ-Ⅴ), and three diameter classes(ⅰ-ⅲ)were sampled for each decay class. The study aimed to explore the effects of decay class and diameter class on the moisture content and wood density of the different structural components(sapwood and heartwood)of the main tree species. 【Result】The moisture content increased with increasing decay class, but the wood density decreased significantly. The wood density of sapwood was significantly higher than that of the heartwood in decay class Ⅲ and overall; however, in the other decay classes, the wood density did not significantly differ between sapwood and heartwood. The moisture content and wood density of sapwood and heartwood were significantly different among some tree species in most decay classes. There was no significant difference in moisture content and wood density among the diameter classes. The moisture content of sapwood and heartwood was significantly different among some tree species in diameter class ⅰ, and the wood density of sapwood and heartwood was significantly different among some tree species in diameter class ⅰ and ⅲ. 【Conclusion】Therefore, influenced by different factors, the moisture content and wood density of woody debris exhibited unique patterns, and decay class and interspecies difference were important factors affecting the variations in the moisture content and wood density

参考文献/References:


[1] CORNELISSEN J H C,SASS-KLAASSEN U,POORTER L,et al.Controls on coarse wood decay in temperate tree species:birth of the LOGLIFE experiment[J].Ambio,2012,41(S3):231-245.DOI:10.1007/s13280-012-0304-3.
[2] RINTA-KANTO J M,SINKKO H,RAJALA T,et al.Natural decay process affects the abundance and community structure of bacteria and archaea in Picea abies logs[J].FEMS Microbiol Ecol,2016,92(7):fiw087.DOI:10.1093/femsec/fiw087.
[3] HOPPE B,KRüGER D,KAHL T,et al.A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies[J].Sci Rep,2015,5:9456.DOI:10.1038/srep09456.
[4] LODGE D,WINTER D,GONZáLEZ G,et al.Effects of hurricane-felled tree trunks on soil carbon,nitrogen,microbial biomass,and root length in a wet tropical forest[J].Forests,2016,7(12):264.DOI:10.3390/f7110264.
[5] BOND-LAMBERTY B,WANG C,GOWER S T.Annual carbon flux from woody debris for a boreal black spruce fire chronosequence[J].Journal of Geophysical Research:Atmospheres,2002,107(D23):1-10. DOI: 10.1029/2001jd000839.
[6] ZHOU L,DAI L M,GU H Y,et al.Review on the decomposition and influence factors of coarse woody debris in forest ecosystem[J].J For Res,2007,18(1):48-54.DOI:10.1007/s11676-007-0009-9.
[7] BARBOSA R I,DE CASTILHO C V,DE OLIVEIRA PERDIZ R,et al.Decomposition rates of coarse woody debris in undisturbed Amazonian seasonally flooded and unflooded forests in the Rio Negro-Rio Branco Basin in Roraima,Brazil[J].For Ecol Manag,2017,397:1-9. DOI: 10.1016/j.foreco.2017.04.026.
[8] HARMON M E,FRANKLIN J F,SWANSON F J,et al.Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research,2004,34:59-234. DOI:10.1016/s0065-2504(08)60121-x.
[9] HARMON M E,SEXTON J.Water balance of conifer logs in early stages of decomposition[J].Plant and Soil,1995,172:141-152.DOI: 10.1007/bf00020868.
[10] PALETTO A,TOSI V.Deadwood density variation with decay class in seven tree species of the Italian Alps[J]. Scand J For Res,2010,25(2):164-173.DOI: 10.1080/02827581003730773.
[11] KRAIGHER H,JURC D,KALAN P,et al.Beech coarse woody debris characteristics in two virgin forest reserves in Southern Slovenia[J]. Zbornik Gozdarstva in Lesarstva,2002,69(69):9l-134.DOI: 10.1007/10713485_596.
[12] GRAHAM R L,CROMACK K.Mass,nutrient content,and decay rate of dead boles in rain forests of Olympic National Park[J].Can J For Res,1982,12(3):511-521.DOI:10.1139/x82-080.
[13] ABBOTT D T,CROSSLEY D A JR.Woody litter decomposition following clear-cutting[J].Ecology,1982,63(1):35-42.DOI:10.2307/1937028.
[14] SAKAI Y,UGAWA S,ISHIZUKA S,et al.Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica[J].Soil Sci Plant Nutr,2012,58(4):526-537.DOI:10.1080/00380768.2012.710526.
[15] KRAMER P J, KOZLOWSHI T T. Physiology of trees[M]. New York: mcGraw-Hill Publication in the Botanical Sciences, 1960. DOI: p.2307/379782.
[16] OSUNKOYA O O,SHENG T K,MAHMUD N A,et al.Variation in wood density,wood water content,stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island[J].Austral Ecol,2007,32(2):191-201.DOI:10.1111/j.1442-9993.2007.01678.x.
[17] HARMON M E,WOODALL C W,FASTH B,et al.Woody detritus density and density reduction factors for tree species in the United States:a synthesis[R].U. S. Department of Agriculture,Forest Service,Northern Research Station: General Technical Report NRS-29,2008. DOI:10.2737/nrs-gtr-29.
[18] 刘妍妍,金光泽.小兴安岭阔叶红松林粗木质残体基础特征[J].林业科学,2010,46(4):8-14.LIU Y Y,JIN G Z.Character of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J].Sci Silvae Sin,2010,46(4):8-14.
[19] 代力民,徐振邦,陈华.阔叶红松林倒木贮量的变化规律[J].生态学报,2000,20(3):412-416.DAI L M,XU Z B,CHEN H.Storage dynamics of fallen trees in the broad-leaved and Korean pine mixed forest[J].Acta Ecol Sin,2000,20(3):412-416.DOI:10.3321/j.issn:1000-0933.2000.03.011.
[20] 陈镜园,毕连柱,宋国华,等.小兴安岭丰林阔叶红松林木质物残体的贮量特征分析[J].南京林业大学学报(自然科学版),2016,40(6):76-84.CHEN J Y,BI L Z,SONG G H,et al.Characteristics of woody debris in mixed broadleaved-Korean pine forest plot in Fenglin National Nature Reserve in Xiao Hinggan Mountains,China[J].J Nanjing For Univ(Nat Sci Ed),2016,40(6):76-84.DOI:10.3969/j.issn.1000-2006.2016.06.012.
[21] 刘妍妍,金光泽.小兴安岭阔叶红松林粗木质残体空间分布的点格局分析[J].生态学报,2010,30(22):6072-6081.LIU Y Y,JIN G Z.Spatial point pattern analysis for coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J].Acta Ecol Sin,2010,30(22):6072-6081.
[22] 张瑜,金光泽.腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J].植物生态学报,2016,40(12):1276-1288.ZHANG Y,JIN G Z.Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis login a typical mixed broadleaved-Korean pine forest[J].Chin J Plant Ecol,2016,40(12):1276-1288.DOI:10.17521/cjpe.2016.0187.
[23] 刘妍妍,金光泽,黎如.小兴安岭阔叶红松林粗木质残体的贮量特征[C]//经济发展方式转变与自主创新——第十二届中国科学技术协会年会论文集. 福州,2010:1082-1089.LIU Y Y,JIN G Z,LI R.Storage characteristics of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, China[C]// Transformation of economic development mode and independent innovation: proceedings of the 12th China Science and Technology Association Annual Meeting. Fuzhou,2010:1082-1089.
[24] 徐丽娜,金光泽.小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J].生物多样性,2012,20(4):470-481.XU L N,JIN G Z.Species composition and community structure of a typical mixed broadleaved-Korean pine(Pinus koraiensis)forest plot in Liangshui Nature Reserve,Northeast China[J].Biodivers Sci,2012,20(4):470-481.DOI:10.3724/SP.J.1003.2012.12233.
[25] 闫恩荣,王希华,黄建军.森林粗死木质残体的概念及其分类[J].生态学报,2005,25(1):158-167.YAN E R,WANG X H,HUANG J J.Concept and classification of coarse woody debris in forest ecosystems[J].Acta Ecol Sin,2005,25(1):158-167.DOI:10.3321/j.issn:1000-0933.2005.01.025.
[26] HARMON M E,FASTH B,WOODALL C W,et al.Carbon concentration of standing and downed woody detritus:effects of tree taxa,decay class,position,and tissue type[J].For Ecol Manag,2013,291:259-267.DOI:10.1016/j.foreco.2012.11.046.
[27] BüTLER R,PATTY L,LE BAYON R C,et al.Log decay of Picea abies in the Swiss Jura Mountains of central Europe[J].For Ecol Manag,2007,242(2/3):791-799.DOI:10.1016/j.foreco.2007.02.017.
[28] FISSORE C,JURGENSEN M F,PICKENS J,et al.Role of soil texture,clay mineralogy,location,and temperature in coarse wood decomposition:a mesocosm experiment[J].Ecosphere,2016,7(11):1-13.DOI:10.1002/ecs2.1605.
[29] SONG Z W,DUNN C,Lü X T,et al.Coarse woody decay rates vary by physical position in tropical seasonal rainforests of SW China[J].For Ecol Manag,2017,385:206-213.DOI:10.1016/j.foreco.2016.11.033.
[30] NOH N,YOON T,KIM R H,et al.Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine(Pinus densiflora S.et Z.)forest[J].Forests,2017,8(6):214.DOI:10.3390/f8060214.
[31] PETRILLO M,CHERUBINI P,SARTORI G,et al.Decomposition of Norway spruce and European larch coarse woody debris(CWD)in relation to different elevation and exposure in an Alpine setting[J].iForest,2016,9(1):154-164.DOI:10.3832/ifor1591-008.
[32] K?STER K,METSLAID M,ENGELHART J,et al.Dead wood basic density,and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests[J].For Ecol Manag,2015,354:35-42.DOI:10.1016/j.foreco.2015.06.039.
[33] BRIN A,BOUGET C,BRUSTEL H,et al.Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests[J].J Insect Conserv,2011,15(5):653-669.DOI:10.1007/s10841-010-9364-5.
[34] FEARNSIDE P M.Wood density for estimating forest biomass in Brazilian Amazonia[J].For Ecol Manag,1997,90(1):59-87.DOI:10.1016/s0378-1127(96)03840-6.
[35] CHEN L X,XIANG W H,WU H L,et al.Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest[J].Ecol Evol,2017,7(14):5366-5377.DOI:10.1002/ece3.3110.
[36] HICKS W T,HARMON M E.Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest,USA[J]. Plant and Soil,2002,243(1):67-79.DOI: 10.1023/A:1019906101359.
[37] MACKENSEN J,BAUHUS J.Density loss and respiration rates in coarse woody debris of Pinus radiata,Eucalyptus regnans and Eucalyptus maculata[J].Soil Biol Biochem,2003,35(1):177-186.DOI:10.1016/s0038-0717(02)00255-9.

相似文献/References:

[1]张 婷,杨 平*.土体单向冻结对土中水分迁移的影响[J].南京林业大学学报(自然科学版),2013,37(01):117.[doi:10.3969/j.issn.1000-2006.2013.01.021]
 ZHANG Ting,YANG Ping*.Effects of unilateralist freezing on the moisture migration of soil[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):117.[doi:10.3969/j.issn.1000-2006.2013.01.021]
[2]王效宾,杨平,张婷.人工冻土融沉特性试验研究[J].南京林业大学学报(自然科学版),2008,32(04):108.[doi:10.3969/j.jssn.1000-2006.2008.04.025]
 WANG Xiao-bin,YANG Ping*,ZHANG Ting.Study on thaw settlement behaviour of artificial freezing soil[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(02):108.[doi:10.3969/j.jssn.1000-2006.2008.04.025]
[3]陈爱军,张家生,陈俊桦,等.重塑黏土单向冻结过程中水分迁移试验研究[J].南京林业大学学报(自然科学版),2016,40(05):115.[doi:10.3969/j.issn.1000-2006.2016.05.018]
 CHEN Aijun,ZHANG Jiasheng,CHEN Junhua,et al.Experimental study on moisture migration in remolded clay during unilateral freezing[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):115.[doi:10.3969/j.issn.1000-2006.2016.05.018]
[4]王玉婷,徐华东,周涵婷,等.环境温度对活立木内部含水率变化的影响[J].南京林业大学学报(自然科学版),2017,41(05):107.[doi:10.3969/j.issn.1000-2006.201606096]
 WANG Yuting,XU Huadong*,ZHOU Hanting,et al.Effects of environmental temperatures on internal moisture content of standing trees[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(02):107.[doi:10.3969/j.issn.1000-2006.201606096]

备注/Memo

备注/Memo:
收稿日期:2018-12-08 修回日期:2019-04-20基金项目:国家自然科学基金项目(31870399)。 第一作者:韩玉娜(nmghanyn@163.com)。*通信作者:金光泽(taxus@126.com), 教授, ORCID(0000-0002-9852-0965)。
更新日期/Last Update: 2019-03-25