[1]卢明星,徐传红,朱咏莉*,等.Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制[J].南京林业大学学报(自然科学版),2020,44(02):173-180.[doi:10.3969/j.issn.1000-2006.2006.201903054.]
 LU Mingxing,XU Chuanhong,ZHU Yongli*,et al.Hormetic effect of Cd on soil alkaline phosphatase:driving mechanism of land use change[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(02):173-180.[doi:10.3969/j.issn.1000-2006.2006.201903054.]
点击复制

Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年02期
页码:
173-180
栏目:
研究论文
出版日期:
2020-03-31

文章信息/Info

Title:
Hormetic effect of Cd on soil alkaline phosphatase:driving mechanism of land use change
文章编号:
1000-2006(2020)02-0173-08
作者:
卢明星12徐传红23朱咏莉123*李萍萍123*
(1. 南京林业大学生物与环境学院,江苏 南京 210037; 2. 南京林业大学,南方现代林业协同创新中心,江苏 南京 210037; 3. 江苏洪泽湖湿地生态系统国家定位观测研究站,江苏 洪泽 223100)
Author(s):
LU Mingxing12 XU Chuanhong23 ZHU Yongli123* LI Pingping123*
(1. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Co-Innovation Center of the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; 3. National Positioning Observation Station of Hungtse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100 China)
关键词:
Hormesis效应 碱性磷酸酶 河湖交汇区(湿地) 土地利用类型
Keywords:
Hormesis Cd alkaline phosphatase confluence area of Hungtse Lake and Huaihe River(wetland) land use type
分类号:
X53
DOI:
10.3969/j.issn.1000-2006.2006.201903054.
文献标志码:
A
摘要:
【目的】土地利用变化引起土壤对环境胁迫的潜力发生改变,以土壤碱性磷酸酶(ALP)为例,研究土壤酶的Hormesis效应,揭示其与土地利用变化的关系。【方法】采集洪泽湖河湖交汇区湿地光滩、芦苇、柳树和杨树人工林,以及农田5种土地利用类型下的土壤,研究自然演替和人为土地利用改变下Cd诱导ALP的Hormesis效应及其差异,解析土地利用改变的影响。【结果】光滩和芦苇两种自然覆被下,Cd诱导ALP的Hormesis效应最大刺激率(ymax)分别为8.81%和5.84%,诱导ALP表达Hormesis效应的Cd剂量范围(D1-D2)分别是0.39~3.02和0.22~3.77mg/kg,剂量区间(Qi)为7.74和17.14,ALP应对Cd胁迫的潜能(R)为11.34和7.85。相比较而言,农田人为土地利用改变下ymax为5.22%,D1-D2为0.09~1.03mg/kg,Qi为11.44,R为3.02。【结论】芦苇围垦为农田使得ymax、Qi和R均明显下降,这可能导致土壤对Cd胁迫伤害的补偿潜力下降。进一步分析表明,洪泽湖河湖交汇区不同土地利用下土壤质地、全氮以及溶解性有机碳含量对ALP的Hormesis效应表达产生了重要影响
Abstract:
【Objective】 Hormesis is characterized as low doses stimulation and high doses inhibition with a typical biphasic dose-response curves under stressors. The phenomenon has been widely reported in different species and individuals(plant, animal, bacteria, protozoa, virus, and so on)within various endpoint types(such as growth, metabolic, reproduction, survival, immune response, and so on). Hormesis is considered to be evolutionarily based with broad potential implications for toxicology, risk assessment, and numerous other areas. In the field of environment science and technology, the Hormesis concept possibly upset the basis for environmental regulations. The government and the public are beginning to rethink the answer to this question “How clean is clean?”. However, in the previous studies almost all experimental models involved in the realm of Hormesis are organisms, hardly linking the findings to the community- or ecosystem-levels of organization. The fundamental problem “How clean is clean” did not find the expected solution from Hormesis yet. Recently, soil hormesis, stress-induced hormetic responses occurred in soils in absence of plants, is increasingly attracting researchers’ interest. The soil itself is assumed to be an experimental model, focusing on revealing the population expression of potential hormetic responses of all active subjects in the soil. Soil enzyme, one of the crucial soil components, involves in catalyzing reactions necessary for organic matter decomposition, nutrient cycling and energy transfer in soil ecosystem, which was considered a typical biological indicator for assessing soil quality and reflect the microbiological activity in soils. Soil enzyme was found to be the best experimental models known for revealing soil hormesis. Land use change has profound effects on soil properties, including soil enzymes. Assuming conversion of land use types to be a special disturbance to soil ecosystems, we attempt to link the compensation potentials of soil ecosystems for the disturbance to soil enzymes’ Hormesis. 【Method】Based on the integrality of mutual feedback net among soil enzymes, soil alkaline phosphatase(ALP), a key enzyme that hydrolyzes organic phosphate to inorganic form thereby increasing soil available phosphorus supply, was selected as a representative to investigate the potential soil hormetic responses with Cd as an inducer under five land use types emerged chronologically, including mudflat(Mud), Phragmites australis(Phr), Salix babylonica (Sal), Populus alba L.(Pop)and farmland(wheat-rice rotation, WRR)in the confluence area of the Hung-tse Lake and Huaihe River, China. 【Result】 Under the natural cover of Mud and Phr, the maximum stimulation rates(ymax)of ALP induced by Cd were 8.81% and 5.84% with dose range(D1-D2)of 0.39-3.02 mg/kg and 0.22-3.77 mg/kg, and dose interval(Qi)of 7.74 and 17.14, respectively. The potential for coping Cd stress(R)was 11.34 and 7.85, respectively. In contrast, parameters for WRR were 5.22%(ymax), 0.09-1.03 mg/kg(D1-D2), 11.44(Qi), and 3.02(R), respectively. This showed that conversion of Phr into WRR resulted in a significant decrease in ymax, Qi, and R, implying that conversion from natural land use to farmland may lead to a decrease in the compensation potential of the soil to Cd stress. In addition, redundancy analysis showed Qi was mainly affected by the contents of soil DOC and 0.1-2.0 μm particles, and the main factors affecting R parameters were pH and SO42- content. 【Conclusion】 Man-made reclamation of wetlands would substantially reduce the capacity of the soil to cope with stress. Soil enzymes’ Hormesis may provide new insight for identifying and eliminating the damage factors induced by land-use change

参考文献/References:


[1] CALABRESE E J, BALDWIN L A. Hormesis and high-risk groups [J]. Regulatory Toxicology and Pharmacology, 2002, 35(3): 414-428. DOI:10.1006/rtph.2001.1529.
[2] CALABRESE E J, BALDWIN L A. Hormesis as a biological hypothesis [J]. Environ Health Perspect, 1998, 106(S1): 357. DOI:10.2307/3433938.
[3] CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief [J]. Nature, 2003, 421(6924): 691-692. DOI:10.1038/421691a.
[4] CALABRESE E J, BLAIN R B. Hormesis and plant biology[J]. Environmental Pollution, 2009,157(1):42-48. DOI:10.1016/j. envpol.2008.07.028.
[5] JIN C W, ZHENG S J, HE Y F, et al. Lead contamination in tea garden soils and factors affecting its bioavailability[J]. Chemosphere,2005, 59(8): 1151-1159. DOI:10.1016/j. chemosphere.2004.11.058.
[6] 郭雪雁,马义兵,李波.陆地生态系统中低剂量毒物刺激作用及拟合模型研究进展[J]. 生态学报,2009,29(8):4408-4419. GUO X Y, MA Y B, LI B. Advances in the effects,mechanisms and modeling of hormesis in terrestrial ecosystems[J]. Acta Ecological Sinica, 2009,29(8):4408-4419. DOI: 10.3321/j.issn:1000-0933.2009.08.047.
[7] BINDEBSOL A M, BAYLEY M, DAMGAARD C, et al. Life-history traits and population growth rate in the laboratory of the earthworm Dendrobaena octaedra cultured in copper-contaminated soil[J]. Applied Soil Ecology, 2007, 35(1):50-56. DOI: 10.1016/j.apsoil.2006.05.010.
[8] BELZ R G, SINKKONEN A. Selective toxin effects on faster and slower growing individuals in the formation of hormesis at the population level:a case study with Lactuca sativa and PCIB[J]. Science of the Total Environment, 2016, 566:1205-1214. DOI: 10.1016/j.scitotenv.2016.05.176.
[9] 范弟武,汤逸帆,陈圆,等.Cd2+和Pb2+对崇明岛东滩湿地土壤脲酶的毒物兴奋效应研究[J]. 湿地科学,2016,14(3):421-427. FAN D W, TANG Y F, CHEN Y, et al. Hormetic effects of Cd2+and Pb2+ on the activity of urease in soils of Dongtan Wetlands in Chongming Island [J]. Wetland Science, 2016,14(3):421-427. DOI: 10.13248/j.cnki.wetlandsci.2016.03.018.
[10] 印杰, 范弟武,徐莎,等. 崇明东滩湿地土壤中Cr3+、Pb2+和Cd2+对硝酸还原酶的Hormesis效应[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 21-26. YIN J, FAN D W, XU S, et al. Hormetic effects of Cr3+, Pb2+ and Cd2+ on nitrate reductase in soils in Chongming Dongtan wetlands[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 21-26. DOI: 10.3969/j.issn.1000-2006.2016.02.004.
[11] FAN D W, HAN J G, CHEN Y, et al. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland[J]. Science of the Total Environment, 2017, 613/614: 792-797. DOI:10.1016/j. scitotenv.2017.09.089.
[12] PETCU V, OPREA G, CIONTU C, et al. Studies on the effect of some herbicides(single and different mixtures)on weeds control and soil quality in maize[J]. Romanian Agricultural Research, 2015(32):245-252.
[13] LANGDON K A, MCALUGHLIN M J, KIRBY J K, et al. The effect of soil properties on the toxicity of silver to the soil nitrification process[J]. Environmental Toxicology and Chemistry, 2014, 33(5):1170-1178. DOI:10.1002/etc.2543.
[14] MIN H, YE Y F, CHEN Z Y, et al. Effects of butachlor on microbial populations and enzyme activities in paddy soil [J]. Environmental Science Health, 2001, 36(5): 581-595. DOI:10.1081/PFC-100106187.
[15] DEFOREST J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA [J]. Soil Biology and Biochemistry,2009, 41(6): 1180-1186. DOI: 10.1016/j.soilbio.2009.02.029.
[16] 梁博,林田苗,任德智,等.土地利用方式对雅江中游土壤理化性质及颗粒分形特征的影响[J].土壤,2018,50(3):613-621. LIANG B, LIN T M, REN D Z, et al. Effects of land use types on soil physicochemical properties and fractal characteristics of soil particle [J]. Soils, 2018,50(3):613-621. DOI:10.13758/j.cnki.tr.2018.03.024.
[17] 张卫青,庞奖励,赛西雅拉图,等.土壤颗粒组成及土壤容重对土地利用变化的响应[J].内蒙古师范大学学报(自然科学汉文版),2016,45(6):870-874,878. ZHANG W Q, PANG J L, SAIXIYALATU, et al. Response of soil particle composition and soil bulk density to land use change[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2016,45(6):870-874,878. DOI: 10.3969/j.issn.1001-8735.2016.06.028.
[18] 冀晴,张永清,柴国丽,等.土地利用方式对晋南黄土高原村域范围内土壤pH值与养分的影响[J].江苏农业科学,2017,45(2):229-232. JI Q, ZHANG Y Q, CHAI G L, et al. Effects of land usepatterns on soil pH value and nutrients in loess plateau villages in southern Shanxi Province[J]. Jiangsu Agricultural Sciences, 2017,45(2):229-232. DOI:10.15889/j.issn.1002-1302.2017.02.066.
[19] 马蓓,周萍,童成立,等.亚热带丘陵区红壤不同土地利用方式下土壤有机碳的变化特征[J].农业现代化研究, 2017,38(1):176-181. MA B, ZHOU P, TONG C L, et al. Change in soil organic carbon with different land uses in subtropical hilly red soil region [J]. Research of Agricultural Modernization, Research of Agricultural Modernization,2017,38(1):176-181. DOI:10.13872/j.1000-0275.2016.0130.
[20] 张金波,宋长春,杨文燕.土地利用方式对土壤水溶性机碳的影响[J].中国环境科学,2005,25(3):343-347. ZHANG J B, SONG C C, YANG W Y.Influence of land-use type on soil dissolved organic carbon in the Sanjiang Plain[J]. China Environmental Science,2005,25(3):343-347. DOI:10.3321/j.issn:1000-6923.2005.03.020.
[21] 徐忠山,刘景辉,逯晓萍,等.秸秆颗粒还田对黑土土壤酶活性及细菌群落的影响[J].生态学报,2019(12):1-8. XU Z S, LIU J H, LU X P, et al. Effects of straw pellet mulching on soil enzyme activity and bacterial community in black soil[J]. Acta Ecologica Sinica, 2019(12):1-8.
[22] 胡尧,李懿,侯雨乐.岷江流域不同土地利用方式对土壤有机碳组分及酶活性的影响[J].生态环境学报,2018,27(9):1617-1624. HU Y, LI Y, HOU Y L. Change of available pool of heavy metals in paddy soils under human land use Impacts from the Taihu Lake Region, Jiangsu Province, China[J]. Ecology and Environmental Sciences,2018,27(9):1617-1624. DOI:10.16258/j.cnki.1674-5906.2018.09.005.
[23] 王振芬.三江平原湿地不同土地利用方式对土壤养分及酶活性的影响[J].水土保持研究,2019,26(2):43-48. WANG Z F. Effects of different land use patterns on soil nutrients and enzyme activities in Sanjiang Plain wetland[J].Research of Soil and Water Conservation, 2019,26(2):43-48. DOI: 10.13869/j.cnki.rawc.2019.02.007.
[24] 曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报,2003,9(1):105-109. CAO H, SUN H, YANG H, et al. Soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied and Environmental Biology,2003,9(1):105-109. DOI:10.3321/j.issn:1006-687X.2003.01.025.
[25]CALABRESE E J. Hormesis within a mechanistic context[J]. Homeopathy,2015,104(2): 90-96. DOI: 10.1016/j.homp.2015.01.002.
[26] 王国庆, 邓绍坡, 冯艳红,等. 国内外重金属土壤环境标准值比较:镉[J]. 生态与农村环境学报, 2015, 31(6):808-821. WANG G Q, DENG S P, FENG Y H, et al. Comparative study on soil environmental standards for heavy metals in China and other countries: cadmium[J]. Journal of Ecology and Rural Environment, 2015, 31(6):808-821. DOI:10.11934/j.issn.1673-4831.2015.06.004.
[27] STEMMER M, GERZABEK M. H, KANDELER E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication[J]. Soil Biology Biochemistry. 1997, 30(1): 9-17. DOI:10.1016/S0038-0717(97)00093-X.
[28] 范弟武,徐莎,周曼丽,等. Cd2+和Cr3+对崇明东滩湿地土壤碱性磷酸酶的低剂量兴奋效应[J]. 生态与农村环境学报, 2016,32(2): 320-325. FAN D W, XU S, ZHOU M L, et al. Low-dose Hormetic effects of Cd2+ and Cr3+ on alkaline phosphatase in wetland soil in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 2016,32(2): 320-325. DOI: 10.11934/j.issn.1673-4831.2016.02.023.
[29] CALABRESE E J, BLAIN R. The occurrence of hormetic dose responses in the toxicological literature, the Hormesis database: an overview[J]. Toxicology and Applied Pharmacology, 2005, 202(3): 289-301. DOI: 10.1016/j.taap.2004.06.023.
[30] JIA L, LIU Z L, CHEN W, et al. Hormesis effects induced by cadmium on growth and photosyntheticperformance in a hyperaccumulator, Lonicera japonica Thunb.[J]. Journal of Plant Growth Regulation,2015, 34(1): 13-21. DOI:10.1007/s00344-014-9433-1.
[31] SETH C S, CHATURVEDI P K, MISRA V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed(Spirodela polyrrhiza L.)in response to its accumulation[J]. Environ Toxicology, 2007, 22(6): 539-549. DOI:10.1002/tox.20292.
[32] CALABRESE E J, IAVICOLI I, CALABRESE V. Hormesis: why it is important to biogerontologists [J]. Biogerontology, 2012, 13(3): 215-235. DOI:10.1007/s10522-012-9374-7.
[33] XIE X F, PU L J, WANG Q Q, et al. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China [J]. Science of the Total Environment, 2017, 607/608:1419.
[34] MATOS E S, FREESE D, MENDONCA E S, et al. Carbon, nitrogen and organic C fractions in topsoil affected by conversion from silvopastoral to different land use systems [J]. Agroforestry Systems, 2011, 81(3): 203-211. DOI:10.1007/s10457-010-9314-y.

相似文献/References:

[1]陈荣平,张银龙*,马爱军,等.腐殖酸改性及其对镉的吸附特性[J].南京林业大学学报(自然科学版),2014,38(04):102.[doi:10.3969/j.issn.1000-2006.2014.04.019]
 CHEN Rongping,ZHANG Yinlong*,MA Aijun,et al.Study on the modification of humic acid and its adsorption to cadmium[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(02):102.[doi:10.3969/j.issn.1000-2006.2014.04.019]

备注/Memo

备注/Memo:
收稿日期:2019-03-20 修回日期:2019-04-18基金项目:国家自然科学基金项目(41977354,41471191); 江苏省“青蓝工程”资助项目(苏教师[2016]15号); 江苏高校优势学科建设工程资助项目(PAPD)。 第一作者:卢明星(1795663428@qq.com)。*通信作者:朱咏莉(zyl@njfu.edu.cn),研究员,ORCID(0000-0002-2912-159x),负责实验指导和数据分析审定; 李萍萍(ppli@njfu.edu.cn),教授,ORCID(000
更新日期/Last Update: 2019-03-25