[1]徐志霞,张雅倩,陶 月,等.不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析[J].南京林业大学学报(自然科学版),2020,44(02):197-205.[doi:10.3969/j.issn.1000-2006.201901021]
 XU Zhixia,ZHANG Yaqian,TAO Yue,et al.Nutrient composition of litters and functional diversity of different microorganisms in various decomposition stages of Casuarina equisetifolia plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(02):197-205.[doi:10.3969/j.issn.1000-2006.201901021]
点击复制

不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年02期
页码:
197-205
栏目:
研究论文
出版日期:
2020-03-31

文章信息/Info

Title:
Nutrient composition of litters and functional diversity of different microorganisms in various decomposition stages of Casuarina equisetifolia plantations
文章编号:
1000-2006(2020)02-0197-09
作者:
徐志霞张雅倩陶 月李 玲李 蕾*
(热带岛屿生态学教育部重点实验室,海南师范大学生命科学学院,海南 海口 571158)
Author(s):
XU Zhixia ZHANG Yaqian TAO Yue LI Ling LI Lei*
(Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou 571158, China)
关键词:
木麻黄 凋落物 外生菌 内生菌 养分特征 代谢功能多样性 碳源利用
Keywords:
Casuarina equisetifolia forest litter surface microbe endophyte nutrient characteristics metabolic diversity carbon source utilization
分类号:
S714.2
DOI:
10.3969/j.issn.1000-2006.201901021
文献标志码:
A
摘要:
【目的】通过了解木麻黄凋落物分解过程中的养分变化以及微生物碳源的利用特征,明确凋落物微生物多样性与养分之间的关系。【方法】在海南省海口市桂林洋海滨选取10~15年生木麻黄林,按照“S”形五点取样法,分别采集0~5cm、≥5~10cm、≥10~15cm等3种不同分解程度的凋落物样品,测定其理化性质,并利用Biolog微孔板法测定凋落物外生菌和内生菌的群落功能多样性,对其进行主成分PCA分析和冗余RDA分析。【结果】①凋落物的分解程度越高,其有机碳、全氮、全磷含量越低。②不同分解程度木麻黄凋落物中外生菌和内生菌功能多样性差异显著,外生菌平均颜色变化率(AWCD)随分解程度增加而增大,而内生菌AWCD则降低。③凋落物分解程度越高,外生菌的Shannon、Simpson指数明显升高,McIntosh指数无显著差异;内生菌的Shannon、Simpson指数也随之增加,而McIntosh指数则明显降低。④外生菌和内生菌对6大类碳源利用强度存在差异,优势碳源分别为糖类和多聚物,分解后期胺类和酚类的利用率均有提高。⑤主成分PCA分析表明,不同分解程度的凋落物外生菌和内生菌对31种碳源的利用均有显著差异;RDA分析表明,碳、氮含量与凋落物外生菌微生物功能多样性指数呈最大相关。【结论】木麻黄凋落物分解程度越大,外生菌碳代谢强度和多样性越高,而内生菌碳代谢强度越低,其多样性越高;凋落物的氮、碳含量是影响凋落物微生物功能多样性的主要因素。因此,外生菌和内生菌在木麻黄凋落物的分解中发挥着不同的作用
Abstract:
【Objective】We focused on the relationship between the microbial diversity and nutrient composition of Casuarina equisetifolia litter by determining changes in the pattern of litter nutrient decomposition and the characteristics of microbial carbon source utilization.【Method】 As a study site, we selected a C. equisetifolia plantation along the coast of the Guilinyang area of Haikou City in Hainan Province, China, which comprises trees of between 10 and 15 years of age. Using the S-type five-point sampling method, we obtained samples representative of three stages of litter decomposition from soil depths of 0-5 cm, ≥5-10 cm and ≥10-15 cm, respectively. The Biolog microporosity plate method was used to determine the functional variation in the diversity of the surface microbes and endophytes of litters at the different stages of decomposition. Principal component analysis(PCA)and redundancy analysis(RDA)analyses were used to determine differences in the utilization of different carbon sources. 【Result】 ① With an increase in the degree of litter decomposition, we observed decreases in the contents of organic carbon, total nitrogen and total phosphorus. ② We also detected significant differences in the functional diversities of exogenous and endophytic bacterial communities at the different stages of decomposition. The average well color development(AWCD)of exogenous microbes increased with an increase in the degree of decomposition, whereas that of endophytes decreased. ③ The Shannon and Simpson diversity index of surface microbes were obviously increased with the increasing decomposition degree of litters. However, there were no significant differences in McIntosh indexes. The Shannon and Simpson diversity index of endophytes of litters showed a similar trend with surface microbes, but the McIntosh index significantly decreased. ④ Exogenous and endophytic bacteria showed different efficiencies in the utilization of six major categories of carbon sources. For both surface microbes and endophytes, the primary carbon sources utilized during the early stages of decomposition were carbohydrates, followed by amides and phenolic acids in the latter stages. ⑤ The PCA results revealed significant differences in litter microbial function among the different degrees of decomposition, and RDA indicated that organic matter and total nitrogen can significantly affect the diversity of surface microbes. 【Conclusion】 Our results revealed that carbon metabolic activity and surface microbe diversity increased with an increase in the degree of litter decomposition, whereas endophyte metabolic activity decreased in response to an increase in microbial diversity. Moreover, we found that pH and total nitrogen content were the two critical factors determining microbial diversity, and that the surface microbes and endophytes associated with litter play different roles during the different stages of decomposition

参考文献/References:


[1] 李云, 周建斌, 董燕捷, 等. 黄土高原不同植物凋落物的分解特性[J]. 应用生态学报, 2012, 23(12):3309-3316. LI Y, ZHOU J B, DONG Y J, et al. Decomposition of different plant litters in Loess Plateau of northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3309-3316. DOI:10.13287/j.1001-9332.2012.0417.
[2] BRAY S R, KITAJIMA K, MACK M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate[J]. Soil Biology & Biochemistry, 2012, 49:30-37. DOI: 10.1016/j.soilbio.2012.02.009.
[3] 曲浩, 赵学勇, 赵哈林, 等. 陆地生态系统凋落物分解研究进展[J]. 草业科学, 2010, 27(8):44-51. QU H, ZHAO X Y, ZHAO H L, et al. Research progress of litter decomposition in terrestrial ecosystems[J]. Pratacultural Science,2010, 27(8):44-51.
[4] 刘利. 季节性冻融对亚高山/高山森林土壤微生物多样性的影响[D].成都:四川农业大学,2010. LIU L. Soil bacterial diversity in the subalpine/alpine forests of western Sichuan affected by seasonal freeze-thaw cycles[D]. Chengdu: Sichuan Agricultural University, 2010.
[5] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34(3):387-401.DOI: 10.1016/S0038-0717(01)00199-7.
[6] 邓仁菊, 杨万勤, 吴福忠. 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响[J]. 应用生态学报, 2009, 20(5):1026-1031. DENG R J, YANG W Q, WU F Z. Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platylla litters[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1026-1031. DOI:10.13287/j.1001-9332.2009.0180.
[7] 郑锟. 沙质海岸木麻黄防护林的结构配置与防护效能研究[D]. 福州:福建农林大学, 2008. ZHENG K. The structure configure and protection effect of Casuarina equisetifolia protection forest on sandy coast[D]. Fuzhou: Fujian Agriculture and Forestry University,2008.
[8] 刘成路, 冉焰辉, 陶悠, 等. 海南岛海岸线木麻黄林现状调查[J]. 林业资源管理, 2013(2):102-118. LIU C L, RAN Y H, TAO Y, et al. The present situation investigation of coastline Casuarina forest in Hainan Island[J]. Forest Resources Management, 2013(2):102-118. DOI: 10.3969/j.issn.1002-6622.2013.02.019.
[9] 肖胜生, 郭瑞红, 叶功富. 沿海木麻黄衰退机理与维护途径的研究进展[J]. 热带林业, 2007, 35(2):15-17. XIAO S S, GUO R H, YE G F. Research advances of decline mechanism and maintenance approach of Casuarinia equisefolia in coastal area[J]. Tropical Forestry, 2007, 35(2):15-17. DOI: 10.3969/j.issn.1672-0938.2007.02.005.
[10] 邓兰桂, 孔垂华, 骆世明, 等. 木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用[J]. 应用生态学报, 1996, 7(2):145-149. DENG L G, KONG C H, LUO S M, et al. Isolation and identification of extract from Casuarnia equisetifolia branchlet and its allelopathy on seedling growth[J]. Chinese Journal of Applied Ecology, 1996, 7(2):145-149. DOI:10.13287/j.1001-9332.1996.0030.
[11] 林武星, 洪伟, 叶功富. 木麻黄根系浸提液对幼苗营养吸收和生长的影响[J]. 浙江农林大学学报, 2005, 22(2):170-175. LIN W X, HONG W, YE G F. Effect of water extract of Casuarina equisetifolia root on nutrient absorption and growth of the seedlings[J]. Journal of Zhejiang Forestry College, 2005, 22(2):170-175. DOI: 10.3969/j.issn.2095-0756.2005.02.009.
[12] 林武星. 木麻黄自身他感作用影响因素及缓解[J]. 防护林科技, 2006(6):1-5.LIN W X. Study on effect factors and relief of self-allelopathy of Casuarina[J]. Protection Forest Science and Technology, 2006(6):1-5. DOI: 10.3969/j.issn.1005-5215.2006.06.001.
[13] LI L, ZHANG Y, WANG C, et al. Effects of leachates of Casuarina equisetifolia on photosynthesis and antioxidant enzymes of Vatica mangachapoi seedlings[J]. Allelopathy Journal, 2014, 33(2):189-199. DOI: 10.4025/actasciagron.v36i2.14570.
[14] XU Z X, ZHANG Y, YAO Y, et al. Allelopathic effects of Casuarina equisetifolia extracts on seed germination of native tree species[J]. Allelopathy Journal, 2015, 36(2):283-292.
[15] 蔡大鑫,刘少军,田光辉,等. 海南岛旅游气候资源分析[J]. 现代农业科技,2010(16):18-20,24. CAI D X, LIU S J, TIAN G H, et al. Analysis on tourism climate resource of Hainan Island[J]. Modern Agricultural Sciences and Technology, 2010(16):18-20,24. DOI: 10.3969/j.issn.1007-5739.2010.16.005.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000. BO S D. Soil agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[17] 李小容,白礼姣,陈本莉,等.不同林龄木麻黄林地土壤理化性质与生化活性分析[J].西北林学院学报,2014,29(2):37-41. LI X R, BAI L J, CHEN B L, et al. Analysis of soil physicochemical properties and biological activity of the Casuarina equisetifolia forests with different ages[J]. Journal of Northwest Forestry University, 2014,29(2):37-41. DOI:10.3969/j.issn.1001-7461.2014.02.07.
[18] 章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004, 36(4):346-350. ZHANG J E, CAI Y F, GAO A X, et al. Review on laboratory methods for soil microbial diversity[J]. Soils, 2004, 36(4):346-350. DOI: 10.3321/j.issn:0253-9829.2004.04.003.
[19] 柴晓蕾,宋希强,朱婕.华石斛内生真菌组织分布特点及其抑菌活性[J].热带作物学报,2018,39(1):137-144. CHAI X L, SONG X Q, ZHU J. Diversity of endophytic fungi isolated from Dendrobium sinense with different culture media and their antimicrobial activities[J]. Chinese Journal of Tropical Crops, 2018,39(1):137-144. DOI:10.3969/j.issn.1000-2561.2018.01.021.
[20] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2000: 170-172. LIN X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2000: 170-172.
[21] CLEVELAND C C, LIPTZIN C D. C:N:P Stoichiometry in soil: is there a “Redfield Ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3):235-252. DOI:10.1007/s10533-007-9132-0.
[22] 许安妮,王宸,陈润芍,等.四川龙溪-虹口常绿阔叶林凋落物与土壤碳、氮、磷化学计量特征分析[J].中国农业科技导报,2019,21(4):158-167. XU A N, WANG C, CHEN R S,et al. C,N,P stoichiometric characteristics analysis of litter and soil in evergreen broad-leaf forest in Longxi-Hongkou Reserve of Sichuan Province[J]. Journal of Agricultural Scienceand Technology,2019,21(4):158-167. DOI:10.13304/j.nykjdb.2018.0205.
[23] 李钦禄,莫其锋,王法明,等.华南热带沿海不同林龄木麻黄人工林养分利用特征[J].应用与环境生物学报,2015,21(1):139-146. LI Q L, MO Q F, WANG F M, et al. Nutrient utilization by nutrient utilization by Casuarina equisetifolia plantation of different ages in the tropical coastal area of South China[J]. Chin J Appl Environ Biol,2015,21(1):139-146. DOI: 10.3724/SP.J.1145.2014.07001.2014.
[24] 曹永昌,谭向平,和文祥,等.秦岭地区不同林分土壤微生物群落代谢特征[J].生态学报,2016,36(10):2978-2986. CAO Y C, TAN X P, HE W X, et al. The metabolism characteristics of microbial community in different forest soil in Qinling Mountains Area[J]. Acta Ecologica Sinica, 2016, 36(10):2978-2986. DOI: 10.5846/stxb201411222316.
[25] 韩冬雪,王宁,王楠楠,等.不同海拔红松林土壤微生物功能多样性[J].应用生态学报,2015,26(12):3649-3656. HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. J Appl Ecol, 2015, 26(12):3649-3656. DOI:10.13287/j.1001-9332.20150929.017.
[26] 吴则焰,林文雄,陈志芳,等.武夷山国家自然保护区不同植被类型土壤微生物群落特征[J].应用生态学报,2013,24(8):2301-2309. WU Z Y, LIN W X, CHEN Z F, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China[J]. 2013,24(8):2301-2309. DOI:10.13287/j.1001-9332.2013.0391.
[27] 谢东锋,张光灿,夏宣宣,等.不同浓度酚酸对欧美杨I-107苗木生长和光合特性的影响[J].生态学报,2018,38(5):1789-1798. XIE D F, ZANG G C, XIA X X, et al. Effects of phenolic acids on the growth and photosynthesis of Populus× euramericana ‘Neva’ [J]. Acta Ecologica Sinica, 2018, 38(5):1789-1798. DOI:10.5846/stxb201704120646.
[28] 王文波,马雪松,董玉峰,等.杨树人工林连作与轮作土壤酚酸降解细菌群落特征及酚酸降解代谢规律[J].应用与环境生物学报,2016,22(5):815-822. WANG W B, MA X S, DONG Y F, et al. Community characteristics and degradation metabolism regulation of soil phenolic acid degrading bacteria in poplar plantations under continuous cropping and crop rotation[J]. Chin J Appl Environ Biol, 2016, 22(5):815-822.

相似文献/References:

[1]魏 强,张广忠,凌 雷,等.甘肃兴隆山主要森林类型凋落物及土壤层的蓄水功能[J].南京林业大学学报(自然科学版),2013,37(02):078.[doi:10.3969/j.issn.1000-2006.2013.02.014]
 WEI Qiang,ZHANG Guangzhong,LING Lei,et al.Water conservation function of litter and soil layer under main forest types in Xinglong Mountain of Gansu[J].Journal of Nanjing Forestry University(Natural Science Edition),2013,37(02):078.[doi:10.3969/j.issn.1000-2006.2013.02.014]
[2]张清海,叶功富,林益明.东南滨海沙地主要造林树种的生物量与能量[J].南京林业大学学报(自然科学版),2007,31(03):143.[doi:10.3969/j.jssn.1000-2006.2007.03.033]
 ZHANC-Qing hai,YE Gon-fu,LIN Yi-ming.Study on Biomass and Energy of Main Species Plantation on the Coast Sandy in the South East of China[J].Journal of Nanjing Forestry University(Natural Science Edition),2007,31(02):143.[doi:10.3969/j.jssn.1000-2006.2007.03.033]
[3]杨振寅,仲崇禄*,张勇,等.元谋干热河谷木麻黄引种试验[J].南京林业大学学报(自然科学版),2007,31(04):057.[doi:10.3969/j.jssn.1000-2006.2007.04.012]
 YANG Zhen-yin,ZHONG Chong-lu*,ZHANG Yong,et al.Casuarina Introduction Trials at Yuanmou Hot Dry River Valley[J].Journal of Nanjing Forestry University(Natural Science Edition),2007,31(02):057.[doi:10.3969/j.jssn.1000-2006.2007.04.012]
[4]叶功富,黄宝龙.木麻黄林生态系统营养元素的地球化学循环[J].南京林业大学学报(自然科学版),1998,22(01):005.[doi:10.3969/j.jssn.1000-2006.1998.01.002]
 Ye Gongfu Huang Baolong(Fujian Research Institute of Forestry Fuzhou 00).STUDIES ON GEOCHEMICAL CYCLING IN CASUARINA EQUISETIFOLIA PLANTATION ECOSYSTEMS[J].Journal of Nanjing Forestry University(Natural Science Edition),1998,22(02):005.[doi:10.3969/j.jssn.1000-2006.1998.01.002]
[5]黄宝龙,叶功富,张水松,等.木麻黄人工林营养元素的动态特性[J].南京林业大学学报(自然科学版),1998,22(02):001.[doi:10.3969/j.jssn.1000-2006.1998.02.001]
 Huang Baolong(Nanjing Forestry University Nanjing 007)Ye Gongfu Zhang Shuisong Xu Junsen Chen Hong Pan Huizhong.STUDIES ON DYNAMIC PROPERTIES ON THE NUTRIENT ELEMENTS IN THE CASUARINA EQUISETIFOLIA PLANTATION[J].Journal of Nanjing Forestry University(Natural Science Edition),1998,22(02):001.[doi:10.3969/j.jssn.1000-2006.1998.02.001]
[6]陈栎霖,刘语欣,范 川,等.台湾桤木-扁穗牛鞭草复合模式下凋落物分解及其养分释放动态[J].南京林业大学学报(自然科学版),2015,39(01):049.[doi:10.3969/j.issn.1000-2006.2015.01.010]
 CHEN Yuelin,LIU Yuxin,FAN Chuan,et al.Litter decomposition and nutrient release dynamics in complex ecosystem of Alnus formosana-Hemarthria compressa[J].Journal of Nanjing Forestry University(Natural Science Edition),2015,39(02):049.[doi:10.3969/j.issn.1000-2006.2015.01.010]
[7]彭 赛,张雅坤,葛之葳,等.氮沉降对微生物分解森林地上凋落物过程的影响[J].南京林业大学学报(自然科学版),2016,40(01):001.[doi:10.3969/j.issn.1000-2006.2016.01.001]
 PENG Sai,ZHANG Yakun,GE Zhiwei,et al.Effects of nitrogen deposition on litter decomposition by microorganisms in forests[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):001.[doi:10.3969/j.issn.1000-2006.2016.01.001]
[8]陈立新,李少博,乔 璐,等.凋落物叶和土壤浸提液对红松种子萌发及 幼苗生长的影响[J].南京林业大学学报(自然科学版),2016,40(02):081.[doi:10.3969/j.issn.1000-2006.2016.02.014]
 CHEN Lixin,LI Shaobo,QIAO Lu,et al.Influence of leaf litter and soil leaching liquor on seed germination and seedling growth of Pinus koraiensis[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):081.[doi:10.3969/j.issn.1000-2006.2016.02.014]
[9]吴金卓,孔琳琳,王娇娇,等.吉林蛟河不同演替阶段针阔混交林 凋落物持水特性研究[J].南京林业大学学报(自然科学版),2016,40(02):113.[doi:10.3969/j.issn.1000-2006.2016.02.019]
 WU Jinzhuo,KONG Linlin,WANG Jiaojiao,et al.Hydrological characteristics of forest litters in conifer and broad-leaved mixed forests at different forest successional stages in Jiaohe, Jilin Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(02):113.[doi:10.3969/j.issn.1000-2006.2016.02.019]
[10]邢海涛,陆元昌*,刘宪钊,等.海南岛东北部木麻黄立木生物量建模[J].南京林业大学学报(自然科学版),2017,41(02):103.[doi:10.3969/j.issn.1000-2006.2017.02.015]
 XING Haitao,LU Yuanchang*,LIU Xianzhao,et al.Modeling above-ground and below-ground biomass of Casuarina equisetifolia in the northeast of Hainan Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(02):103.[doi:10.3969/j.issn.1000-2006.2017.02.015]

备注/Memo

备注/Memo:
收稿日期:2019-01-17 修回日期:2019-09-06基金项目:海南省自然科学基金项目(2018CXTD337)。 第一作者:徐志霞(shanshizhixia@163.com),实验师。*通信作者:李蕾(lei-li@126.com),教授,ORCID(0000-0002-8973-9893)。
更新日期/Last Update: 2019-03-25