[1]罗 艳,何朋俊,吕 倩,等.目标树经营初期对马尾松人工林碳贮量的影响[J].南京林业大学学报(自然科学版),2020,44(02):206-214.[doi:10.3969/j.issn.1000-2006.201905006.]
 LUO Yan,HE Pengjun,LYU Qian,et al.Early effect of target tree management on carbon storage in Pinus massoniana plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(02):206-214.[doi:10.3969/j.issn.1000-2006.201905006.]
点击复制

目标树经营初期对马尾松人工林碳贮量的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年02期
页码:
206-214
栏目:
研究论文
出版日期:
2020-03-31

文章信息/Info

Title:
Early effect of target tree management on carbon storage in Pinus massoniana plantations
文章编号:
1000-2006(2020)02-0206-09
作者:
罗 艳1何朋俊2吕 倩1范 川134冯茂松134李贤伟134*陈露蔓1
3. 长江上游林业生态工程四川省重点实验室, 四川 成都 611130; 4. 长江上游森林资源保育与生态安全国家林业与草原局重点实验室, 四川 成都 611130)
Author(s):
LUO Yan1HE Pengjun2LYU Qian1FAN Chuan134FENG Maosong134LI Xianwei134*CHEN Luman1
(1. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; 2. Chongqing Tongnan District Forestry Bureau, Tongnan 402660,China; 3. Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China; 4. Key Laboratory of National Forestry and Grassland Administration on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, China)
关键词:
目标树经营 碳贮量 马尾松人工林 生态系统 乔木层 土壤层 林下层
Keywords:
target tree management carbon storage Pinus massoniana plantation ecosystem arbor layer soil layer understory layer
分类号:
S753.7
DOI:
10.3969/j.issn.1000-2006.201905006.
文献标志码:
A
摘要:
【目的】大气温室气体浓度增加导致全球气候变暖日益受到重视,保护现有人工林碳贮量以及开展科学的森林经营活动,已成为改善林分结构,增强陆地碳汇的重要措施。【方法】以川东华蓥33年马尾松人工林为对象,采用3种目标树密度(H1.100;H2.150;H3.200株/hm2)经营方式,研究目标树经营后马尾松人工林碳贮量变化。【结果】与对照林分相比较,目标树经营后乔木层(各器官)、林下层贮量变化差异显著(P<0.05),而不同处理间土壤层碳贮量变化差异不显著(P>0.05);目标树经营后乔木层碳贮量生长量分别为15.65%、18.70%、16.59%,均高于HCK(对照林)的13.4%;目标树干、枝、叶、根和全株碳贮量生长量平均值较一般树高出66.04%、51.25%、52.09%、48.81%和38.67%,各器官碳贮量大小顺序为树干>根系>树枝>树叶;林下层碳贮量变化除草本层为H2>H3>H1>HCK,其余层次皆为H3>H2>H1>HCK;土壤层碳贮量为244.86t/hm2,占林分总碳贮量76.44%,但土壤表层(0~5cm)碳贮量占土壤层(0~40cm)的45.52%,并呈现随着土壤深度增加而显著减少的趋势;马尾松林碳库空间分布为土壤层(0~40cm)>乔木层>灌木层>草本层>枯枝落叶层>粗木残体层。【结论】目标树经营可提高马尾松人工林碳贮量,且经营密度为150株/hm2的马尾松林碳贮量最高
Abstract:
【Objective】 Increasing atmospheric greenhouse gas concentrations have led to an increase in the attention toward the causes and effects of global warming. Protecting existing plantation carbon storage and carrying out scientific forest management activities have become important measures to improve the structure of forest stands and enhance terrestrial carbon sinks. 【Method】 A 33-year-old Pinus massoniana plantation in Huaying City, eastern Sichuan, China, was used to analyze the variations of Pinus massoniana carbon storage on the basis of target tree density. 【Result】 We adopted a target tree density of 100(H1), 150(H2)and 200(H3)plants/hm2 for our study. The results showed that, compared with the control forest(HCK), the storage changes of the arbor layer(organs)and the understory of the target tree were significantly different(P < 0.05)but that there was no significant difference in soil layer carbon storage between different treatments(P > 0.05). The carbon storage growth of the arbor layer was 15.65%, 18.70% and 16.59% for H1, H2 and H3, respectively, which was higher than 13.4% for HCK. The average carbon storage growth of stem, branch, leaf, root and whole tree in the target tree were higher than 66.04%, 51.25%, 52.09%, 48.81% and 38.67% for HCK; these values higher than that of ordinary trees. The range of carbon storage in each organ was trunk > root > branch > leaf. The carbon storage in the herb layer was H2>H3>H1>HCK, and the rest of them were H3>H2>H1>HCK. Carbon storage of the soil layer was 244.86 t/hm2 and accounted for 76.44% of the total carbon storage in the plantation, but the carbon storage in the soil surface(0-5 cm)accounted for 45.52% of the soil layer(0-40 cm). A trend of significant reduction in carbon storage was observed with an increase in soil depth. The spatial distribution of the carbon pool of Pinus massoniana plantation was soil layer(0-40 cm)> arbor layer > shrub layer > herb layer > litter layer > crude wood residue layer.【Conclusion】 Target tree management can increase the carbon storage of Pinus massoniana plantations, and the carbon storage in Pinus massoniana plantations with a density of 150 target trees per hectare was the highest

参考文献/References:


[1] 杨育林,李贤伟,周义贵,等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报, 2014, 20(6): 971-977. YANG Y L,LI X W,ZHOU Y G, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan [J]. Chin J Appl Environ Biol, 2014, 20(6):971-977. DOI:10.3724/SP.J.1145.2014.05004.
[2] 苏宇,李贤伟,刘运科,等. 柏木低效林林窗改造初期边界木细根形态和生物量变异[J]. 西北植物学报, 2015, 35(3): 587-593. SU Y, LI X W, LIU Y K, et al. Fine root morphology and biomass characteristics at preliminary stage of gap border trees of reformed low beneficial Cupressus funebris forests [J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(3):971-977. DOI:10.7606/j.issn.1000-4025.2015.03.0587.
[3] 王大鹏,王文斌,郑亮,等. 中国主要人工林土壤有机碳的比较[J]. 生态环境学报, 2014, 23(4): 698-704. WANG D P,WANG W B,ZHENG L, et al. Compared of soil organic carbon of different plantations in China [J]. Ecology and Environmental Sciences, 2014, 23(4):698-704. DOI:10.16258/j.cnki.1674-5906.2014.04.005.
[4] 黄雪蔓,尤业明,蓝嘉川,等. 不同间伐强度对杉木人工林碳储量及其分配的影响[J]. 生态学报, 2016, 36(1): 156-163. HUANG X M,YOU Y M,LAN J C, et al. The effect of carbon storage and its allocation in Cunninghamia lanceolate plantations with different thinning intensities[J]. Acta Ecologica Sinica, 2016, 36(1):156-163. DOI:10.5846/stxb201411242333.
[5] 毛子军. 森林生态系统碳平衡估测方法及其研究进展[J]. 植物生态学报, 2002, 26(6): 731-738. MAO Z J. Summary of estimation methods and research advances of the carbon balance of forest ecosystems [J]. Acta Phytoecologica Sinica, 2002, 26(6)731-738. DOI:10.3321/j.issn:1005-264X.2002.06.015.
[6] 崔秋芳,赵佳宝,陈家林,等. 不同林龄阶段的松栎混交人工林碳储量研究[J]. 生态环境学报, 2015, 24(12): 1944-1949. CUI Q F,ZHAO J B,CHEN J L, et al. Study on carbon storage of a mixed pine-oak plantation based on different ages [J]. Ecology and Environmental Sciences, 2015, 24(12):1944-1949. DOI:10.16258/j.cnki.1674-5906.2015.12.003.
[7] SUZUKI S N, TSUNODA T, NISHIMURA N, et al. Dead wood offsets the reduced live wood carbon stock in forests over 50-years after a stand-replacing wind disturbance[J]. Forest Ecology and Management, 2019, 432:94-101. DOI: 10.1016/j.foreco.2018.08.054.
[8] 陶玉华,冯金朝,马麟英,等. 广西罗城马尾松、杉木、桉树人工林碳储量及其动态变化[J]. 生态环境学报, 2011, 20(11): 1608-1613. TAO Y H, FENG J C, MA L Y, et al. Carbon storage and distribution of massion pine,Chinese fir and Eucalyptus plantations at Liuzhou,Guangxi Province [J]. Ecology and Environmental Sciences, 2011, 20(11):1608-1613. DOI:10.16258/j.cnki.1674-5906.2011.11.014.
[9] WILLIAMS N G, POWERS M D. Carbon storage implications of active management in mature Pseudotsuga menziesii forests of western Oregon[J]. Forest Ecology and Management, 2019, 432: 761-775. DOI: 10.1016/j.foreco.2018.10.002.
[10] MA J, KANG F, CHENG X, et al. Moderate thinning increases soil organic carbon in Larix principis-rupprechtii(Pinaceae)plantations[J]. Geoderma, 2018, 329:118-128. DOI: 10.1016/j.geoderma.2018.05.021.
[11] 刘运科,范川,李贤伟,等. 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响[J]. 植物生态学报, 2012, 36(7):645-654. LIU Y K, FAN C, LI X W, et al. Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China [J]. Chinese Journal of Plant Ecology, 2012, 36(7):645-654. DOI:10.3724/SP.J.1258.2012.00645.
[12] CHEN X, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology. 2016, 107: 162-169. DOI: 10.1016/j.apsoil.2016.05.016.
[13] 吴建强. 干扰树间伐对杉木人工林碳贮量的影响[D]. 杭州:浙江农林大学, 2014. WU J Q. Effects of crop tree release treatment on carbon storage of Chinese fir plantation[D]. Hangzhou:Zhejiang A & F University,2014.
[14] 吕倩,尹海锋,何朋俊,等. 马尾松人工林目标树经营初期对土壤理化性质与植物多样性的影响[J]. 应用与环境生物学报, 2018, 24(3): 500-507. Lü Q,YIN H F,HE P J, et al. Effects of early management of Pinus massoniana plantation target trees on soil physicochemical properties and plant diversity [J]. Chin J Appl Environ Biol, 2018, 24(3):500-507. DOI:10.19675/j.cnki.1006-687x.2017.12003.
[15] 吴建强,王懿祥,杨一,等. 干扰树间伐对杉木人工林林分生长和林分结构的影响[J]. 应用生态学报, 2015, 26(2): 340-348. WU J Q,WANG Y X,YANG Y et al. Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, Feb, 2015, 26(2):340-348. DOI:10.13287/j.1001-9332.20141223.011.
[16] 王懿祥,张守攻,陆元昌,等. 干扰树间伐对马尾松人工林目标树生长的初期效应[J]. 林业科学, 2014, 50(10): 67-73. WANG Y Y,ZHANG S G,LU Y C, et al. Initial effects of crop trees growth after crop tree release on Pinus massoniana plantation [J]. Scientla Silvae Sinicae, 2014, 50(10):67-73. DIO:10.11707/j.1001-7488.20141009.
[17] 陆元昌,张守攻,雷相东,等. 人工林近自然化改造的理论基础和实施技术[J]. 世界林业研究, 2009, 22(1): 20-27. LU Y C,ZHANG S G,LEI X D, et al. Theoretical basis and implem entation techniques on close-to-nature transformation of plantations[J]. World Forestry Research, 2009, 22(1): 20-27. DIO: 10.13348/j.cnki.sjlyyj.2009.01.002.
[18] WIESMEIER M, URBANSKI L, HOBLEY E, et al. Soil organic carbon storage as a key function of soils: a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149-162. DOI: 10.1016/j.geoderma.2018.07.026.
[19] 明安刚,贾宏炎,田祖为,等. 不同林龄格木人工林碳储量及其分配特征[J]. 应用生态学报, 2014, 25(4): 940-946. MING A G,JIA H Y,TIAN Z W, et al. Characteristics of carbon storage and its allocation in Erythrophleum fordii plantations with different ages[J]. Chinese Journal of Applied Ecology, 2014, 25(4):940-946. DOI:10.13287/j.1001-9332.2014.0079.
[20] 明安刚,张治军,谌红辉,等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013, 49(10): 1-6. MING A G,ZHANG Z J,CHENG H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10):1-6. DOI:10.11707/j.1001-7488.20131001.
[21] 徐金良,毛玉明,成向荣,等. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 2014, 25(7): 1898-1904. XU J L,MAO Y M,CHENG X R, et al. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations[J]. Chinese Journal of Applied Ecology, 2014, 25(7):1898-1904. DOI:10.13287/j.1001-9332.2014.0126.
[22] 段梦成,王国梁,史君怡,等. 间伐对油松人工林碳储量的长期影响[J]. 水土保持学报, 2018, 32(5): 190-196. DUAN M C,WANG G L,SHI J Y, et al. Long-term effects of thinning on carbon storage in Pinus tabulae formis plantations[J]. Journal of Soil and Water Conservation, 2018, 32(5):190-196. DOI:10.13870/j.cnki.stbcxb.2018.05.031.
[23] 戎建涛,何友均. 不同森林经营模式对丹清河林场天然次生林碳贮量的影响[J]. 林业科学, 2014, 50(9): 26-35. RONG J T,HE Y J. Effects of different forest management regimes on carbon stock in natural secondary forests at danqinghe forestry farm [J]. Scientla Silvae Sinicae, 2014, 50(9):26-35. DOI:10.11707/j.1001-7488.20140904.
[24] ZHANG X, GUAN D, LI W, et al. The effects of forest thinning on soil carbon stocks and dynamics: a meta-analysis[J]. Forest Ecology and Management, 2018, 429: 36-43. DOI: 10.1016/j.foreco.2018.06.027.
[25] CAMPBELL J, ALBERTI G, MARTIN J, et al. Carbon dynamics of a ponderosa pine plantation following a thinning treatment in the northern Sierra Nevada[J]. Forest Ecology and Management, 2009, 257(2): 453-463. DOI:10.1016/j.foreco.2008.09.021.
[26] 马明东,江洪,刘跃建. 楠木人工林生态系统生物量、碳含量、碳贮量及其分布[J]. 林业科学, 2008, 44(3): 34-39. MA M D,JIANG H,LIU Y J. Biomass,carbon content,carbon storage and their vertical distribution of Phoebe bourmei artificial stand [J]. Scientla Silvae Sinicae, 2008, 44(3):34-39. DOI:10.11707/j.1001-7488.20080310.
[27] 丁波,丁贵杰,李先周,等. 短期间伐对杉木人工林生态系碳储量的影响[J]. 中南林业科技大学学报, 2016, 36(8): 66-71. DING B,DING G J,LI X Z, et al. Effects of short-term thinning on the carbon storage in Cunninghamia lanceolata plantation ecosystem[J]. Journal of Central South University of Forestry & Technology, 2016, 36(8):66-71. DOI:10.14067/j.cnki.1673-923x.2016.08.013.
[28] 邓华平,李树战,何明山,等. 豫南不同年龄杉木林生态系统碳贮量及其空间动态特征[J]. 中南林业科技大学学报, 2011, 31(8): 83-90. DENG H P,LI S Z,HE M S, et al. Carbon stock and its allocation in 5 different age stand of Cunninghamia lanceolate forest ecosystem in south of Henan[J]. Journal of Central South University of Forestry & Technology, 2011, 31(8):83-90. DOI:10.14067/j.cnki.1673-923x.2011.08.036.
[29] 何斌,刘运华,余浩光,等. 南宁马占相思人工林生态系统碳素密度与贮量[J]. 林业科学, 2009, 45(2): 6-11. HE B,LIU Y H,YU H G, et al. Carbon density and storage of Acacia mangium plantation ecosystem in Nanning, Guangxi [J]. Scientla Silvae Sinicae, 2009, 45(2):6-11. DOI:10.11707/j.1001-7488.20090202.
[30] 文仕知,田大伦,杨丽丽,等. 桤木人工林的碳密度、碳库及碳吸存特征[J]. 林业科学, 2010, 46(6): 15-21. WEN S Z,TIAN D L,YANG L L, et al. Carbon density carbon stock and carbon sequestration in Alnus cremastogyne plantation [J]. Scientla Silvae Sinicae, 2010, 46(6):15-21. DOI:10.11707/j.1001-7488.20100603.
[31] 彭信浩,韩海荣,徐小芳,等. 间伐和改变凋落物输入对华北落叶松人工林土壤呼吸的影响[J]. 生态学报, 2018, 38(15): 5351-5361. PENG X H, HAN H R, XU X F, et al. Thinning treatment and litterfall changes influence soil respiration in a Larix principis-rupprechtii plantation[J]. Acta Ecologica Sinica, 2018, 38(15):5351-5361. DOI: 10.5846/stxb201703160449.
[32] DANG X, LIU G, ZHAO L, et al. The response of carbon storage to the age of three forest plantations in the Loess Hilly Regions of China[J]. Catena, 2017, 159: 106-114. DOI: 10.1016/j.catena.2017.08.013.
[33] 秦晓佳,丁贵杰. 不同林龄马尾松人工林土壤有机碳特征及其与养分的关系[J]. 浙江林业科技, 2012, 32(2): 12-17. QIN X J,DING G J. Characteristics of soil organic carbon and its relationship with nutrients in different aged Pinus massoniana plantation stands[J]. Jour of Zhejiang For Sci & Technol, 2012, 32(2):12-17. DOI:10.3969/j.issn.1001-3776.2012.02.003.
[34] NIU D, WANG S, OUYANG Z. Comparisons of carbon storages in Cunninghamia lanceolata and Michelia macclurei plantations during a 22-year period in southern China[J]. Journal of Environmental Sciences, 2009, 21(6): 801-805. DOI:10.1016/s1001-0742(08)62344-x.
[35] ZHENG H, OUYANG Z, XU W H, et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China[J]. Forest Ecology and Management, 2008, 255(3-4): 1113-1121. DOI:10.1016/j.foreco.2007.10.015.

备注/Memo

备注/Memo:
收稿日期:2019-05-06 修回日期:2019-11-13基金项目:国家重点研发计划(2017YFD0600302-05); 德国政府贷款四川林业可持续经营项目(G1403083)。 第一作者:罗艳(949652314@qq.com),ORCID(0000-0003-1159-8629)。*通信作者:李贤伟(lxw@sicau.edu.cn),教授,ORCID(0000-0001-8635-6291)。
更新日期/Last Update: 2019-03-25