HUANG Honglan,ZHONG Wogu,YI Deping,et al.Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(3):163-170.[doi:10.3969/j.issn.1000-2006.201812037]





Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China
黄红兰 钟沃谷 衣德萍 蔡军火 张露
作者单位: 江西环境工程职业学院林业学院,江西 赣州 341000 ; 复旦大学大气与海洋科学系,大气科学研究院,上海 200438 ; 江西农业大学林学院,江西特色林木资源培育与利用2011协同创新中心,江西 南昌 330045
HUANG Honglan13 ZHONG Wogu2 YI Deping1 CAI Junhuo3 ZHANG Lu3
(1. Forestry Institute, Jiangxi Environmental Engineering Vocational College, Ganzhou 341000, China ; 2. Department of Atmospheric and Oceanic Sciences / Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China ; 3. 2011 Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry,Jiangxi Agricultural University, Nanchang 330045, China )
气候变化 气候因子 地理分布 适生区 MaxEnt模型 毛红椿
climate change climatic factor geographical distribution suitable distribution area MaxEnt model var.
目的 毛红椿(Toona ciliata var. pubescens)为楝科香椿属落叶乔木,被列为国家二级保护濒危物种。了解未来气候变化对中国毛红椿潜在适生区分布格局的影响加强栖息地与环境因素间影响适宜度等的评估为其物种保护与生态恢复提供依据 方法 基于来自中国江西云南安徽浙江、湖南、广西、贵州、四川8 个省(区)的53个地理分布点 运用 MaxEnt 生态位模型 选取当前未来 2040 s 和 2060 s 时段于 RCP 2.6RCP 4.5RCP 8.5的3种温室气体排放情景下进行模拟预测,然后将分布模拟图经MapGIS 10.0识别、几何精校正与矢量化处理,进一步比较分析毛红椿未来分布格局的气候响应 结果 本生态位模型的模拟效果理想当前适生分布因东西向低纬度分布特征显著而呈形似狭长岛屿状分布位于中国东部季风区以雨热同期的亚热带季风气候为主最热季平均降水量和气温决定毛红椿的适生分布区域最冷月最低气温可能是其分布的主要限制气候因子 未来气候变化下受未来分布区的降水量降低冬季低温升高的气候变化影响当前适生区可能发生华中分布区域以东的规模性消退削减至当前规模的 31.90% ~63. 73% 未来适生分布将随气候变化情景梯度向西迁移其地理中心将移至云南省林区较适生以上分布区域的分布格局波动将趋于集中并将迁移至中国高海拔分布区的云南四川贵州等省境区域 结论 总体上未来气候可能对毛红椿的适宜程度分布范围分布规模与斑块状连续分布格局等产生负面影响并形成较适生及以上区域的独岛状分布进一步加剧毛红椿的濒危风险 建议加强对当前保护区内毛红椿不同地理居群的保护将云南四川贵州等省列入未来气候变化监测的核心区域分析毛红椿居群与气候环境波动,以及与地形小生境适应、变化的规律。
Objective Toona ciliata var. pubescens, a deciduous broad-leaved plant, is a secondary endangered species under state protection in China. Understanding the impact of future climate change on the potential distribution patterns of T. ciliata var. pubescens in China and assessing the interaction between its habitat and environmental factors would contribute to its conservation and ecological restoration. Method The MaxEnt model was applied to the distribution data obtained from 53 locations spread across the Jiangxi, Yunnan, Anhui, Zhejiang, Hunan, Guangxi, Guizhou and Sichuan Provinces to estimate habitat suitability at present and in the future (by 2040s and 2060s) under three greenhouse gas emission scenarios of RCP 2.6, RCP 4.5 and RCP 8.5. The output data were processed using MapGIS 10.0 software, including identification, geometric correction and vectorization processing, and then used to analyze the response of T. ciliata var. pubescens to future climate change. Result The simulation results of the MaxEnt model were verified to be ideal. The current distribution pattern of T. ciliata var. pubescens was similar to a narrow island with its distinctive east-west features. This pattern was determined by the mean precipitation in the hottest quarter and temperature in a given year; the minimum air temperature of the coldest month may be the main limiting climatic factor for its distribution. The results illustrated that the suitable T. ciliata var. pubescens habitats will make a large-scale recession toward the east of central China under future climate change, mainly due to a decrease in rainfall and an increase in the minimum air temperature in winter. Under different greenhouse gas emission scenarios, the reduction rates in its habitable areas would vary from 31.90% to 63.73 %, and its geographic center would probably migrate into Yunnan Province. The distribution patterns in more suitable areas will become more concentrated and might migrate to the high-altitude areas of the Yunnan, Sichuan and Guizhou Provinces. Conclusion In brief, future climate change is likely to have negative effects on the suitability, distribution range, distribution scale, and patchy continuous distribution pattern of T. ciliata var. pubescens, and its distribution to higher suitability areas might be more concentrated. These combined effects will increase the degree of its future endangerment. We recommend strengthening the protection measures for T. ciliata var. pubescens not only in the currently protected areas but also in the sensitive areas of climate change, such as Yunnan, Sichuan, Guizhou and other Provinces. Further research should be focused on the relationship between the population fluctuation of T. ciliata var. pubescens and climate change as well as its adaptation to a particular ecological niche.


1 THOMAS C D,CAMERON A,GREEN R E,et al. Extinction risk from climate change??[J]. Nature,2004,4276970): 145148. DOI:10.1038/nature02121.
2 LOISELLE B A,J0RGENSEN P M,CONSIGLIO T,et al. Predicting species distributions from Herbarium collections: does climate bias in collection sampling influence model outcomes??[J]. Journal of Biogeography,2008,35: 105-116. DOI:10.1111/j. 1365-2699.2007.01779.x.
3 BAKKENES M,ALKEMADE J R M,IHLE F,et al. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050?[J]. Global Change Biology,2002,8(4):390-407. DOI:10.1046/j. 1354 -1013.2001.00467. x.
4 SHAFER S L,BARTLEIN P J,THOMPSON R S. Potential changes in the distributions of western north America tree and shrub taxa under future climate scenarios?[J]. Ecosystems,2001,4(3):200-215. DOI:10.1007/s10021-001-0004-5.
5 WALTHER G R,POST E,CONVEY P,et al. Ecological responses to recent climate change?[J]. Nature,2002,416(6879:389-395. DOI:10.1038/416389a.
7 LUOTO M,POYRY J,HEIKKINEN R K,et al. Uncertainty of bioclimate envelope models based on the geographical distribution of species?[J]. Global Ecology and Biogeography,2005,146): 575-584. DOI:10.1111/j.1466-822x.2005.00186.x.
8 MATSUIT,YAGIHASHI T,NAKAYAT,etal. Probability distributions,vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan?[J]. Journal of Vegetation Science,2004,155): 605 -614. DOI:10.1111 / j. 1654-1103.2004. tb02302. x.
11 THUILLER W. BIOMOD?optimizing predictions of species distributions and projecting potential future shifts under global change?[J]. Global Change Biology,2003,9(10):1353-1362. DOI:10.1046/j.1365-2486.2003.00666.x.
22 PHILLIPS S J,ANDERSON R P,SCHAPIRE R E. Maximum entropy modeling of species geographic distributions?[J]. Ecological Modelling,2006,190(3/4): 231-259. DOI:10.1016 / j. ecolmodel. 2005.03.026.
23 KUMAR S,STOHLGREN T J. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia?[J]. Journal of Ecology and the Natural Environment,2009,1(4): 94-98
28 HITZ S,SMITH J. Estimating global impacts from climate change?[J]. Global Environmental Change,2004,14(3): 201 -218. DOI:10.1016 / j. gloenvcha. 2004.04.010.
31 WOODWARD F I,WILLIAMS B G. Climate and plant distribution at global and local scales?[J]. Vegetatio,1987,69(1/2/3: 189-197. DOI:10.1007/bf00038700.
32 LEEMANS R,EICKHOUT B. Another reason for concern: regional and global impacts on ecosystem for different levels of climate change?[J]. Global Environmental Changes,2004,14: 219-228. DOI:10.1016/j.gloenvcha.2004.04.009.


 YAN Shaofeng,LU Qian,ZHANG Jinchi*,et al.The spatiotemporal evolution characteristics and response of regional climate change of NDVI at Jiangsu coastal areas[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(3):043.[doi:10.3969/j.jssn.1000-2006.2012.01.009]
 YAO Yu-bi,LI Yao-bang,ZHANG Mou-cao,et al.Response on Climate in Longdong Loess Plateau to Globe Warming and Fruit Development Impacted[J].Journal of Nanjing Forestry University(Natural Science Edition),2005,29(3):073.[doi:10.3969/j.jssn.1000-2006.2005.04.018]
 CHENG Zehu,DING Kunyuan,LIU Yanhong*.Relationship between arborous layer productivity and climatic factors in Pinus tabulaeformis natural forests and plantations in Beijing[J].Journal of Nanjing Forestry University(Natural Science Edition),2016,40(3):177.[doi:10.3969/j.issn.1000-2006.2016.05.028]
[4]江大龙,徐 侠*,阮宏华*.植物养分重吸收及其影响研究进展[J].南京林业大学学报(自然科学版),2017,41(01):183.[doi:10.3969/j.issn.1000-2006.2017.01.028]
 JIANG Dalong,XU Xia*,RUAN Honghua*.Review of nutrient resorption and its regulating in plants[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(3):183.[doi:10.3969/j.issn.1000-2006.2017.01.028]
 LIU Qingliang,LI Yao,et al.MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions[J].Journal of Nanjing Forestry University(Natural Science Edition),2017,41(3):025.[doi:10.3969/j.issn.1000-2006.201608010]
[6]韩会庆,张娇艳*,马 庚,等.气候变化对生态系统服务影响的研究进展[J].南京林业大学学报(自然科学版),2018,42(02):184.[doi:10.3969/j.issn.1000-2006.201706007]
 HAN Huiqing,ZHANG Jiaoyan*,MA Geng,et al.Advances on impact of climate change on ecosystem services[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(3):184.[doi:10.3969/j.issn.1000-2006.201706007]
 CHEN Jiaxin,YANG Hongqiang*.Advances and frontiers in global forest and harvested wood products carbon science[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(3):001.[doi:10.3969/j.issn.1000-2006.201801035]


更新日期/Last Update: 2020-06-11