[1]范洪旺,BUIVan Thang,陶晓,等.城乡空间差异对麻栎林土壤活性有机碳的影响[J].南京林业大学学报(自然科学版),2020,44(4):151-158.[doi:10.3969/j.issn.1000-2006.201907016]
 FAN Hongwang,BUI Van Thang,TAO Xiao,et al.Effects of spatial difference between urban and rural areas on soil active organic carbon in Quercus acutissima forests[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(4):151-158.[doi:10.3969/j.issn.1000-2006.201907016]
点击复制

城乡空间差异对麻栎林土壤活性有机碳的影响/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年4期
页码:
151-158
栏目:
研究论文
出版日期:
2020-09-01

文章信息/Info

Title:
Effects of spatial difference between urban and rural areas on soil active organic carbon in Quercus acutissima forests
文章编号:
1000-2006(2020)04-0151-08
作者:
范洪旺 BUIVan Thang 陶晓 管致玮 许克福
作者单位:安徽农业大学林学与园林学院,安徽 合肥 230036; 越南林业大学第二分校林学系,同奈省 81000; 安徽农业大学轻纺工程与艺术学院,安徽 合肥 230036
Author(s):
FAN Hongwang1 BUI Van Thang12 TAO Xiao1 GUAN Zhiwei3 XU Kefu1
(1.School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; 2.Department of Forestry, The Second Branch of Vietnam Forestry University, Dong Nai Province 81000, Vietnam; 3.Textile Engineering and Academy of Art, A
关键词:
城乡空间 微生物量碳(MBC) 可溶性有机碳(DOC) 麻栎林
Keywords:
urban-rural gradient microbial biomass carbon(MBC) dissolved organic carbon(DOC) forest
分类号:
S714
DOI:
10.3969/j.issn.1000-2006.201907016
文献标志码:
A
摘要:
目的 了解城乡空间差异下森林土壤活性有机碳的动态变化和影响因素,为城市森林生态系统的碳循环研究提供数据支撑。 方法 以合肥市城乡空间差异3个森林公园为研究对象,研究城乡麻栎林0~10 cm和≥10~20 cm土层内土壤活性有机碳含量,探讨城乡空间差异对森林土壤有机碳的影响。 结果 城乡空间差异条件下,麻栎林土壤微生物量碳(MBC)和可溶性有机碳(DOC)含量差异显著(P<0.01):中心城区土壤MBC年均值(177.26 mg/kg)显著高于城郊(97.89 mg/kg)和乡村(89.91 mg/kg);中心城区土壤DOC年均值(139.59 mg/kg)>乡村(99.94 mg/kg)>城郊(96.42 mg/kg),不同城乡空间森林表层土壤MBC和DOC含量比≥10~20 cm土层的高。森林土壤MBC具有明显的季节变化,最高值出现在秋季(10月),而土壤DOC未发现显著季节变化。相关分析表明,土壤MBC和DOC与土壤总有机碳(TOC)、全氮(TN)呈极显著相关(P<0.001),土壤DOC与pH呈极显著负相关。 结论 不同城乡空间环境因子与土壤养分共同作用导致了土壤活性有机碳时空格局的差异。
Abstract:
Objective Forests hold the largest carbon stocks of all terrestrial ecosystems, therefore playing a critical role in mitigating global climate change. Soil microbial biomass is often used as an early indicator of changes in soil properties, and has also been used to understand the characteristics and the factors influencing the active organic carbon in forest soils, both in urban and rural environments. Method In this study, we selected three forest parks in Hefei City characterized as either urban, rural or suburban, respectively.Soil samples from two upper layers (0-10 cm and ≥10-20 cm) were collected and analyzed for natural forest active organic carbon contents. The effects of urbanization on the forest soil organic carbon were analyzed in order to enhance the understanding of carbon cycles in urban forest ecosystems. Result The soil microbial biomass carbon (MBC) and dissolved organic carbon (DOC) contents in the central urban area were significantly different (P < 0.001) to those in the suburbs and rural areas. Furthermore, the average annual soil MBC (177.26 mg/kg) in the central urban area was significantly higher than those in the suburbs (97.89 mg/kg) and rural areas (89.91 mg/kg). The annual average DOC of soil varied in the following order: central city (139.59 mg/kg) > rural (99.94 mg/kg) > suburb (96.42 mg/kg). The MBC and DOC of the upper layer of soil in the urban and rural forests were higher than those of the lower soil layer (≥10?20 cm). The MBC of the forest soil in both urban and rural environments changed seasonally, with the highest value observed in autumn (October). However, there were no significant seasonal variations in soil DOC. The correlation analysis indicated that both soil MBC and DOC were significantly correlated with soil organic carbon and total nitrogen (P <0 .001). Furthermore, soil DOC was significantly negatively correlated with pH (P < 0.001). Conclusion The interaction between environmental factors (in urban, suburban, and rural forests) and soil nutrients illustrated the spatial and temporal patterns of active organic carbon in forest soils along the urban to rural gradient.

参考文献/References:

1 LIANG B C,MACKENZIE A F,SCHNITZER M,et al.Management?induced change in labile soil organic matter under conti?nuous corn in eastern Canadian soils[J]. Biol Fertil Soils,1997,26(2):88-94.DOI:10.1007/s003740050348.
2 DILLY O,BLUME H P,SEHY U,et al. Variation of stabilised,microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices[J]. Chemosphere,2003,52(3):557-569. DOI:10. 1016/s0045-6535(03)00237-6.
3 HUANG H,CHEN G S,XIE J S,et al. Advances on soil microbial biomass carbon and its effect factor[J]. Hubei For Sci Technol,2008,37(4):34-41.
4 SUN Z L,WANG C K. Dissolved and particulate carbon fluxes in forest ecosystems[J]. Acta Ecol Sin,2014,34(15):4133-4141. DOI:10. 5846/stxb201302270309.
5 SIX J,CALLEWAERT P,LENDERS S,et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Sci Soc Am J,2002,66(6):1981-1987. DOI:10. 2136/sssaj2002. 1981.
6 YANG J S,LIU J S. Distribution characteristics of microbial biomass carbon and dissolved organic carbon in Deyeuxia angustifolia marsh soils[J]. Chin J Ecol,2009,28(8):1544-1549. DOI:10. 13292/j. 1000-4890. 2009. 0268.
7 LI Y,HAN H Y,WANG W J,et al. Effects of different land use types on soil organic carbon and microbial respiration in Huang?Huai?Hai Plain[J]. Ecol Environ Sci,2017,26(1):62-66. DOI:10. 16258/j. cnki. 1674-5906. 2017. 01. 010.
8 LEFF J W,WIEDER W R,TAYLOR P G,et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest[J]. Glob Change Biol,2012,18(9):2969-2979. DOI:10. 1111/j. 1365-2486. 2012. 02749. x.
9 ZHENG X Z,ZHANG X X,LIN W S,et al. Ects of different tree species on soil dissolved organic carbon and microbial biomass carbon in subtropical China[J]. J Fujian Norm Univ (Nat Sci Ed),2018,34(6):86-93. DOI:10. 12046/j. issn. 1000-5277. 2018. 06. 014.
10 LI Y,LIU M,ZENG Q C,et al. Frontier situation analysis of the research on soil carbon sequestration and soil microbial diversity based on bibliometric[J]. Chin J Soil Sci,2017,48(3):745-756. DOI:10. 19336/j. cnki. trtb. 2017. 03. 33.
11 EVANS C D,JONES T G,BURDEN A,et al. Acidity controls on dissolved organic carbon mobility in organic soils[J]. Glob Change Biol,2012,18(11):3317-3331. DOI:10. 1111/j. 1365-2486. 2012. 02794. x.
12 FEI F,XIAO W Y,DIAO J J,et al. Short?term effects of forest gap size on soil microbial biomass carbon and nitrogen in the Platycladus orientalis plantation[J]. Acta Ecol Sin,2018,38(3):1087-1096. DOI:10. 5846/stxb201611072254.
13 FAN Z P,WANG Q,LI F Y. Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning[J]. Chin J Ecol,2018,37(11):3220-3230. DOI:10. 13292/j. 1000-4890. 201811. 031.
14 QIU Q Y,LIANG G H,HUANG D W,et al. Advances in studies on soluble organic carbon in forest soils[J]. J Southwest For Coll,2013,33(1):86-96. DOI:10. 3969/j. issn. 2095-1914. 2013. 01. 016.
15 LI H Y,XIN Y,ZHAO Y S. Distribution characteristics of soft organic carbon of burned area under different restorations[J]. Chin J Appl Ecol,2016,27(9):2747-2753. DOI:10. 13287/j. 1001-9332. 201609. 036.
16 YANG M F,ZHU L Q,HAN X Z,et al. Short?term effects of different tillage modes combined with straw?returning on the soil labile organic carbon components in a farmland with rice?wheat double cropping[J]. Chin J Appl Ecol,2013,24(5):1387-1393. DOI:10. 13287/j. 1001-9332. 2013. 0304.
17 HUTYRA L R,YOON B,ALBERTI M. Terrestrial carbon stocks across a gradient of urbanization:a study of the Seattle,WA region[J]. Glob Chang Biol,2011,17(2):783-797. DOI:10. 1111/j. 1365-2486. 2010. 02238. x.
18 HAYNES R J,FRANCIS G S. Changes in microbial biomass C,soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions[J]. J Soil Sci,1993,44(4):665-675. DOI:10. 1111/j. 1365-2389. 1993. tb02331. x.
19 WANG H H,LI L Q,PAN G X,et al. Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing,China[J]. Chin J Ecol,2005,24(3):273-277. DOI:10. 13292/j. 1000-4890. 2005. 0251.
20 XI D,KUANG Y W. Characteristics of soil organic carbon and its fractions in subtropical evergreen broad?leaved forests along an urbanization gradient[J]. Chin J Appl Ecol,2018,29(7):2149-2155. DOI:10. 13287/j. 1001-9332. 201807. 026.
21 KANG L F,LI F R,HUA W,et al. The effects of different land?use types on quality of urban soils[J]. Ecol Sci,2006,25(1):59-63.
22 CHEN S,WANG X K,LU F. Research on forest microbial community function variations in urban and suburban forests[J]. Chin J Soil Sci,2012,43(3):614-620. DOI:10. 19336/j. cnki. trtb. 2012. 03. 018.
23 ZHANG X L,HE K,AN C H,et al. Influence of different land use on urban soil active organic carbon:a case study of Kaifeng City[J]. Ecol Environ,2006,15(6):1220-1223. DOI:10. 3969/j. issn. 1674-5906. 2006. 06. 019.
24 TAO X,XU X N,SHI L. Distribution characteristics of urban soil active organic carbon and nitrogen and related controlling factors[J]. Chin J Ecol,2011,30(12):2868-2874. DOI:10. 13292/j. 1000-4890. 2011. 0417.
25 WHALEN J K,PARMELEE R W,MCCARTNEY D A,et al. Movement of N from decomposing earthworm tissue to soil,microbial and plant N pools[J]. Soil Biol Biochem,1999,31(4):487-492. DOI:10. 1016/s0038-0717(97)00252-6.
26 TONG C,DONG Y,YANG H Y. Soil dissolved organic carbon,microbial biomass carbon,and enzyme activity of urban green lands in Fuzhou[J]. Chin J Ecol,2009,28(6):1093-1101. DOI:10. 13292/j. 1000-4890. 2009. 0184.
27 AN S Q,GONG L,LI Y M,et al. Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the northern Tarim basin[J]. Environ Sci,2018,39(7):3382-3390. DOI:10. 13227/j. hjkx. 201711090.
28 TIAN S Y,MAN X L. Characteristics of soil microbial biomass carbon and dissolved organic carbon in northern forest region of Daxing’an Montains[J]. Chin J Soil Sci,2016,47(4):838-845. DOI:10. 19336/j. cnki. trtb. 2016. 04. 11.
29 KAISER K,GUGGENBERGER G,ZECH W. Organically bound nutrients in dissolved organic matter fractions in seepage and pore water of weakly developed forest soils[J]. Acta Hydrochim Hydrobiol,2002,28(7):411-419. DOI:10. 1002/1521-401x(20017)28:7<411::aid-aheh411>3. 0. co;2-d.
30 RUMPEL C,K?GEL?KNABNER I. Deep soil organic matter:a key but poorly understood component of terrestrial C cycle[J]. Plant Soil,2011,338(1/2):143-158. DOI:10. 1007/s11104-010-0391-5.
31 DAI Y Z,WANG H R,LI A Q,et al. Dynamical pattern of soil microbial biomass and its response to nitrogen and phosphorus additions in a subtropical evergreen broad?leaved forest[J]. Ecol Environ Sci,2018,27(8):1395-1404. DOI:10. 16258/j. cnki. 1674-5906. 2018. 08. 002.
32 LIU P,QIU Y,WANG Y T,et al. Seasonal dynamics of soil microbial biomass in typical shelterbelts on the Bohai muddy coast[J]. Acta Ecol Sin,2019,39(1):363-370. DOI:10. 5846/stxb201711021961.
33 ZHANG L, ZHANG D L, MAO Z J, et al. The characteristic and maintains of recalcitrant organic carbon of different communities type[J]. Forest Engineering, 2019, 35(6): 16-25. DOI:10. 16270/j. cnki. slgc. 2019. 06. 020.
34 WANG G B,RUAN H H,TANG Y F,et al. A review on the dynamics of soil microbial biomass in forest ecosystems[J]. J Anhui Agric Univ,2009,36(1):100-104. DOI:10. 13610/j. cnki. 1672-352x. 2009. 01. 026.
35 MCDOWELL W H,MAGILL A H,AITKENHEAD?PETERSON J A,et al. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution[J]. For Ecol Manag,2004,196(1):29-41. DOI:10. 1016/j. foreco. 2004. 03. 010.
36 TAN G X,LIU Y Q,LI L L,et al. Content and seasonal change of soil labile organic carbon under four different plantations in degraded red soil region[J]. Acta Agric Univ Jiangxiensis,2014,36(2):434-440. DOI:10. 13836/j. jjau. 2014071.
37 WARDLED A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil[J]. Biol Rev,1992,67(3):321-358. DOI:10. 1111/j. 1469-185x. 1992. tb00728. x.
38 JOERGENSEN R G,ANDERSON T H,WOLTERS V. Carbon and nitrogen relationships in the microbial biomass of soils in beech (Fagus sylvatica L. ) forests[J]. Biol Fertil Soils,1995,19(2/3):141-147. DOI:10. 1007/bf00336150.
39 XIAO H Y,LIU B,YU Z P,et al. Effects of forest types on soil dissolved organic carbon and nitrogen in surface and deep layers in subtropical region,China[J]. Chin J Appl Ecol,2016,27(4):1031-1038. DOI:10. 13287/j. 1001-9332. 201604. 029.
40 KALBITZ K,SCHWESIG D,RETHEMEYER J,et al. Stabilization of dissolved organic matter by sorption to the mineral soil[J]. Soil Biol Biochem,2005,37(7):1319-1331. DOI:10. 1016/j. soilbio. 2004. 11. 028.
41 HUANG Q,WU J T,CHEN J,et al. Adsorption of dissolved organic carbon(DOC) on soil:a review[J]. Soils,2015,47(3):446-452. DOI:10. 13758/j. cnki. tr. 2015. 03. 003.
42 WU R,KANG F F,HAN H R,et al. Effect of environment factors on soil microbial biomass in Mt. Taiyue,Shanxi,China[J]. Chin J Soil Sci,2016,47(5):1126-1133. DOI:10. 19336/j. cnki. trtb. 2016. 05. 17.
43 BRUNET F,POTOT C,PROBST A,et al. Stable carbon isotope evidence for nitrogenous fertilizer impact on carbonate weathering in a small agricultural watershed[J]. Rapid Commun Mass Spectrom,2011,25(19):2682-2690. DOI:10. 1002/rcm. 5050.
44 HUANG Y H,LI Y L,XIAO Y,et al. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China[J]. For Ecol Manag,2011,261(7):1170-1177. DOI:10. 1016/j. foreco. 2010. 12. 030.

备注/Memo

备注/Memo:
收稿日期:2019-07-12
更新日期/Last Update: 2020-08-13