[1]许梦璐,吴炜,颜铮明,等.滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布[J].南京林业大学学报(自然科学版),2020,44(4):167-175.[doi:10.3969/j.issn.1000-2006.202001021]
 XU Menglu,WU Wei,YAN Zhengming,et al.Content and vertical distribution of soil labile organic carbons in different land use types in the tidal flat area[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(4):167-175.[doi:10.3969/j.issn.1000-2006.202001021]
点击复制

滨海滩涂不同土地利用类型土壤活性有机碳含量与垂直分布
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年4期
页码:
167-175
栏目:
研究论文
出版日期:
2020-09-01

文章信息/Info

Title:
Content and vertical distribution of soil labile organic carbons in different land use types in the tidal flat area
文章编号:
1000-2006(2020)04-0167-09
作者:
许梦璐 吴炜 颜铮明 曹国华 沈彩芹 阮宏华
作者单位:南京林业大学生物与环境学院,南方现代林业协同创新中心,江苏 南京 210037; 江苏省东台市林场, 江苏 东台 224200
Author(s):
XU Menglu1 WU Wei1 YAN Zhengming1 CAO Guohua2 SHEN Caiqin2 RUAN Honghua1
(1.Co-Innovation Center for the Sustainable Forestry in Southern China,College of Biology and the Environment,Nanjing Forestry University,Nanjing 210037,China; 2.Dongtai City Forest Farm of Jiangsu Province,Dongtai 224200,China)
关键词:
可溶性有机碳 微生物生物量碳 易氧化碳 土地利用类型 滩涂围垦
Keywords:
dissolved organic carbon microbial biomass carbon easily oxidized carbon land use type reclamation
分类号:
S154.1;S714
DOI:
10.3969/j.issn.1000-2006.202001021
文献标志码:
A
摘要:
目的 近年来,滨海滩涂已成为人类围垦开发的主要区域。围垦,一方面改变了土壤基本的理化性质,另一方面也加速了土壤有机碳库的变化,特别是对围垦活动比较敏感的活性有机碳,因此研究围垦区不同土地利用类型下土壤有机碳及其活性组分的含量与差异,能够为合理开发利用滨海湿地,了解围垦区的土壤碳循环特征提供参考。 方法 选择江苏东台沿海滩涂围垦区林地、旱地及水田土壤作为研究对象,并以光滩土壤作为对照,分层采集不同剖面的土壤样品,分析不同土地利用类型下可溶性有机碳(dissolved organic carbon, DOC)、微生物生物量碳(microbial biomass carbon, MBC)和易氧化碳(easily oxidized carbon, EOC)含量的变化特征及与土壤基本理化指标间的相关性。 结果 ①随着土层深度的增加,各土地利用类型土壤DOC含量呈先增(0~40 cm)后减(≥40 ~100 cm)的趋势;土壤MBC和EOC含量均随土层深度呈现显著阶梯式下降。不同土地利用类型同一土层,除了DOC含量表现为光滩显著大于林地、旱地和水田外, MBC和EOC 的含量由大到小顺序依次为林地、水田、旱地、光滩。②随土层深度的增加,DOC和MBC分配比例的变化趋势一致,即光滩中无明显变化规律,林地、旱地和水田均先增后减,EOC分配比例随着土层深度的增加则没有表现出一致的变化趋势。0~40 cm土层,林地、旱地和水田的有机碳活性组分分配比例均显著低于光滩,40cm以下,各分配比例没有呈现一致的规律。③土壤MBC和EOC含量之间存在极显著相关关系,且二者均与土壤总有机碳(soil organic carbon, SOC)、总氮(total nitrogen, TN)含量呈极显著正相关,与pH呈极显著负相关,但与电导率(electric conductivity, EC)和总磷(total phosphorus, TP)含量之间不存在相关关系。而土壤DOC含量则与各指标间均不存在相关性。 结论 人为的农业耕种措施显著增加了土壤有机碳及其活性组分的含量,提高了土壤有机碳的稳定性,其中,林地和水田土壤活性有机碳含量较多,尤其林地更有利于土壤有机碳的积累,可能发挥更大的碳汇功能。水田降低pH效果最佳,故在围垦初期,人类耕作活动以水田为主可快速脱盐脱钙,进而有利于有机碳的积累。滨海滩涂的开发利用可能显著改变原有湿地碳循环的路径与模式,故应该充分考虑滩涂围垦对土壤碳循环的影响。
Abstract:
Objective Coastal tidal flats have a high carbon sequestration potential, which may contribute to alleviating the global greenhouse effect.However, they are being reclaimed at an increasing rate because they provide important land for relieving population pressure, promoting regional economic growth, and ensuring food safety. With the largest area of tidal flats in China, a long history of coastal reclamation activities has been existed in Jiangsu Province. Tidal flat reclamation practices change the basic physical and chemical properties of soil, and accelerate changes in the soil organic carbon pool, especially the active organic carbon, which is sensitive to reclamation activities. Meanwhile, the active organic carbon components can be used to characterize the short term changes in the soil organic carbon pool. As such, studying the differences in soil organic carbon and its active components under different land use types in reclamation areas may provide a reference for the rational development and utilization of coastal wetlands. It is also important to elucidate the role of soil carbon in coastal reclamation areas. Method A bare tidal flat, paddy field, and area of upland and forest land in the reclamation area in Dongtai, Jiangsu were selected as research sites.At each site, soil samples were collected from different soil depth layers in order to analyze the variations in dissolved organic carbon (DOC), microbial biomass carbon (MBC) and easily oxidized carbon (EOC) under the different land use types. Result ①With the increase of soil depth, the DOC content increased in soil depths of 0—40 cm soils, but decreased in soil depths of 40—100 cm.Furthermore, the MBC and EOC content decreased significantly in soil depths of 0—100 cm across the four land use types. When tested in the same soil layer, the DOC content of the bared tidal flat soil was significantly larger than that of the soil in the other three land use types. However, the MBC and EOC content descended in the following order: forest land, paddy field, upland,bared tidal flat soil.②With the increase of soil depth, the ratio of DOC to SOC and the ratio of MBC to SOC content followed the same trend in the forest land, the upland and the paddy field; first they increased in soil of 0—40 cm depth, then decreased in soil of 40—100 cm depth. However, there were no obvious changes in the bare tidal flat soil,and the ratio of EOC to SOC content did not show the same trend with the increase of soil depth. Furthermore, in soil depths of 0—40 cm, the ratios of DOC to SOC, MBC to SOC content, and EOC to SOC content in the forest land, upland and paddy field were significantly lower than those in the bared tidal flat. ③The MBC and EOC contents were significantly correlated, and were both significantly correlated with SOC, TN content and pH. However, the correlations with EC and TP content were not significant, and DOC content was not correlated with any of the indices. Conclusion Our results indicate that agricultural cultivation measures significantly increased the content of soil organic carbon and its active components, and improved the stability of the soil organic carbon.The forest land and paddy field had more soil active organic carbon than the other sites tested. The forest land in particular had accumulated the most soil organic carbon, indicating that the types of land may play an important role as carbon sinks in the coastal area of Jiangsu, southeastern China.Reclamation had the best effect on decreasing soil pH at the paddy field site, and as the main farming activity which is practiced at the early stages of reclaiming land fromtidal flats, this could quickly lead to desalination and decalcification of the land. In conclusion, the development and utilization of tidal flats can significantly change the natural pathway and models of the carbon cycles in the coastal wet lands, and the impacts of land use designation on the soil carbon cycle during reclamation should be fully considered in future research.

参考文献/References:

1 WEIL R R, ISLAM K R, STINE M A, et al. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use[J]. Ameri J Alter Agri, 2003, 18(1): 3-17. DOI:10.1079/AJAA200228.
2 GU L H,POST W M,KING A W.Fast labile carbon turnover obscures sensitivity of heterotrophic respiration from soil to temperature:a model analysis[J].Global Biogeochem Cycles,2004,18(1):GB1022.DOI:10.1029/2003gb002119.
3 SHEN H,CAO Z H,HU Z Y.Characteristics and ecological effects of the active organic carbon in soil[J].Chin J Ecol,1999,18(3):32-38.DOI:10.13292/j.1000-4890.1999.0038.
4 SEARCHINGER T,HEIMLICH R,HOUGHTON R A,et al.Use of US croplands for biofuels increases greenhouse gases through emissions from land?use change[J].Science,2008,319(5867):1238-1240.DOI:10.1126/science.1151861.
5 ZOU X M,RUAN H H,FU Y,et al.Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation?incubation procedure[J].Soil Biol Biochem,2005,37(10):1923-1928.DOI:10.1016/j.soilbio.2005.02.028.
6 ZHAO X,YU W T,LI J D,et al.Research advances in soil organic carbon and its fractions under different management patterns[J].Chin J Appl Ecol,2006,17(11):2203-2209.DOI:10.13287/j.1001-9332.2006.0433.
7 SUN B H,HALLETT P D,CAUL S,et al.Distribution of soil carbon and microbial biomass in arable soils under different tillage regimes[J].Plant Soil,2011,338(1/2):17-25.DOI:10.1007/s11104-010-0459-2.
8 HOU H T,ZHANG C Z,ZHANG J B,et al.Effects of fertilization and maize growing on soil microbial biomass carbon and nitrogen[J].Soils,2012,44(1):163-166.DOI:10.13758/j.cnki.tr.2012.01.021.
9 CAI X B,PENG Y L,YU B Z,et al.Changes in major fractions of active soil organic carbon in alpine steppes different in states[J].Acta Pedol Sin,2013,50(2):315-323.
10
11 CAO L,SONG J M,LI X G,et al. Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China[J].Acta Ecol Sin,2013,33(17) :5141-5152.DOI:10.5846/stxb201206030803.
12 PU H M,WANG G M.Mechanism of dissolved organic carbon adsorption in soils underdifferent poplar plantation management patterns[J].J Nanjing For Univ (Nat Sci Ed ),2019,43(2):55-63.DOI:10.3969/j.issn.1000-2006.201803028.
13 WANG Y,RUAN H H,HUANG L L,et al.Soil labile organic carbon of different land use types in a reclaimed land area of Taihu Lake[J].Chin J Ecol,2010,29(4):741-748.DOI:10.13292/j.1000-4890.2010.0112.
14 TIAN Y W,LIU Y F,WANG C,et al.Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province[J].J Nanjing For Univ (Nat Sci Ed ),2019,43(1):83-90.DOI:10.3969/j.issn.1000-2006.201709057.
15 HUO L L,CHEN Z K,ZOU Y C,et al.Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon[J].Ecol Eng,2013,51:287-295.DOI:10.1016/j.ecoleng.2012.12.020.
16 ZENG C S,ZHONG C Q,TONG C,et al.Impacts of LUCC on soil organic carbon contents in wetland of Minjiang River estuary[J].J Soil Water Conserv,2008,22(5):125-129.DOI:10.13870/j.cnki.stbcxb.2008.05.030.
17 JONES D,WILLETT V.Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and Dissolved organic carbon (DOC) in soil[J].Soil Biol Biochem,2006,38(5):991-999.DOI:10.1016/j.soilbio.2005.08.012.
18 FREY S D,KNORR M,PARRENT J L,et al.Chronic nitrogen enrichment affects the structure and function of the soil micro?bial community in temperate hardwood and pine forests[J].For Ecol Manag,2004,196(1):159-171.DOI:10.1016/j.foreco.2004.03.018.
19 BLAIR G J,LEFROY R,LISLE L.Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Aust J Agric Res,1995,46(7):1459.DOI:10.1071/ar9951459.
20 SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C?saturation of soils[J]. Plant Soil, 2002, 241(2): 155-176. DOI:10.1023/A:1016125726789.
21 WU J Q,MA W W,LI G,et al.Contents of active organic carbon in soils of different flooding areas in marshy meadow in Gahai wetlands[J].Wetl Sci,2017,15(1):137-143.DOI:10.13248/j.cnki.wetlandsci.2017.01.020.
22 MAIE N,WATANABE A,KIMURA M.Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil[J].Geoderma,2004,120(3/4):309-323.DOI:10.1016/j.geoderma.2004.02.007.
23 ZHANG W M,WU M,SHAO X X,et al.Changes in soil organic carbon and its active fractions during different reclamation period on the south coast of Hangzhou Bay[J].J Soil Water Conserv,2014,28(2):226-231.DOI:10.13870/j.cnki.stbcxb.2014.02.043.
24 WAN Z M,GUO Y,GUO Y D.Research progress on influence of land use on wetland soil active organic carbon[J].Ecol Environ Sci,2011,20(3):567-570.DOI:10.16258/j.cnki.1674-5906.2011.03.020.
25 MA S D,XIE X B,ZHU S L.The distributive characteristics of poc in seawater and doc in seawater and interstitial water of Liaodong bay[J].Mar Sci,1995,19(6):46-50.DOI: 10.1007/BF02006258.
26 GONG Y Y,ZHU X P,LI D P,et al.Effect of land use type on the active organic carbon of wetland soil in an arid area[J].Pratacultural Sci,2019,36(8):1944-1952.DOI:10.11829/j.issn.1001-0629.2019-0595.
27 YAN J J, LIU H J, et al. Soil labile organic carbon fractions and the differences of their concentrations in different types of wetlands in Yili valley[J]. Chin J of Ecol,2019, 38(7): 2087-2093.
28 ZHANG S J,XIANG W H,SUN W J,et al.Effects of different land use types on soil organic carbon and microbial biomass carbon in the hilly area,central Hunan Province[J].J Soil Water Conserv,2013,27(2):222-227.DOI:10.13870/j.cnki.stbcxb.2013.02.035.
29 LI T K,ZHU B,WANG X G,et al.Effects of land use on the contents of soil active organic carbon[J].Chin J Soil Sci,2013,44(1):46-51.DOI:10.19336/j.cnki.trtb.2013.01.007.
30 ZHANG C E, LIANG Y L, HE X B. Effects of plastic cover cultivation on soil microbial biomass[J]. Acta Ecol Sin, 2002, 22(4): 508-512.DOI:10.3321/j.issn:1000-0933.2002.04.009.
ZHANG C E,LIANG Y L,HE X B.Effects of plastic cover cultivation on soil microbial biomass[J].Acta Ecol Sin,2002,22(4):508-512.
31 THORBURN P J,MEIER E A,COLLINS K,et al.Changes in soil carbon sequestration,fractionation and soil fertility in response to sugarcane residue retention are site-specific[J].Soil Tillage Res,2012,120:99-111.DOI:10.1016/j.still. 2011.11.009.
32 WANG G B,ZHAO X L,WANG M H,et al. Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province,East China[J].Chin J Appl Ecol,2013,24(4):921-926.DOI:10.13287/j.1001-9332. 2013.0246.
33 XIAO Y,HUANG Z G,WU H T,et al.Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain,Northeast China[J].Acta Ecol Sin,2015,35(23):7625-7633.
34 ZHOU C N,MA H P.Distribution of labile organic carbon in soil as affected by vegetation typical of sygera mountains,Tibet,China[J].Acta Pedol Sin,2013,50(6):1246-1251.
35 JANDL R,SOLLINS P.Water?extractable soil carbon in relation to the belowground carbon cycle[J].Biol Fertil Soils,1997,25(2):196-201.DOI:10.1007/s003740050303.
36 XU X,ZHOU Y,RUAN H H,et al.Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains,China[J].Soil Biol Biochem,2010,42(10):1811-1815.DOI:10.1016/j.soilbio.2010.06.021.
37 ZHANG S J,XIANG W H,SUN W J,et al.Soil Dissolved organic carbon concentration under different land?use patterns in a hilly area of central Hunan Province,China[J].Chin J Ecol,2014,33(8):2065-2071.DOI:10.13292/j.1000-4890.2014.0187.
38 ZHANG J B,SONG C C.The sensitive evaluation indicators of effects of land?use change on soil carbon pool[J].Ecol Environmnet,2003,12(4):500-504.DOI:10.16258/j.cnki.1674-5906.2003.04.031.
39 TANG G Y,HUANG D Y,TONG C L,et al.Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J].Chin J Appl Ecol,2006,17(3):3429-3433.DOI:10.13287/j.1001-9332.2006.0088.
40 WANG X J,WANG X S,HUANG C D,et al.Characteristics of soil organic carbon and labile organic carbon under different land use types at forest?drought valley ecotone in the upper reaches of Minjiang River[J].J Soil Water Conserv,2011,25(2):167-172.DOI:10.13870/j.cnki.stbcxb.2011.02.038.
41 WANG Y,RUAN H H,HUANG L L,et al.Soil labile organic carbon with different land uses in reclaimed land area from Taihu Lake[J].Soil Sci,2010,175(12):624-630.DOI:10.1097/ss.0b013e3181fe2ee4.
42 LIU X D.Characteristics of soil labile organic carbon fractions in different communities of desert steppe[D].Yinchuan:Ningxia University,2017.
43 ZHOU X F.Effects of land?use changes on soil organic carbon of reclaimed alluvial soils in the Yangtze Estuary[D].Shanghai:East China Normal University,2010.
44 ZHANG X,ZHANG M,WU P B,et al.Short?term variation of soil chemical properties after tidal flat reclamation in a typical coastal area[J].Chin J Soil Sci,2016,47(2):346-352.DOI:10.19336/j.cnki.trtb.2016.02.14.
45 LUTZE J L,GIFFORD R M.Nitrogen accumulation and distribution in Danthonia richardsonii swards in response to CO2 and nitrogen supply over four years of growth[J].Glob Chang Biol,2000,6(1):1-12.DOI:10.1046/j.1365-2486.2000.00276.x.
46 SOUSSANA J F,LEMAIRE G.Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop?livestock systems[J].Agric Ecosyst Environ,2014,190:9-17.DOI:10.1016/j.agee.2013.10.012.
47 MAN Z,HU C J,FENG D X,et al.Effect of community structure adjustment of pure Populus tomentosa planataion on soil carbon in the semi?arid Loess Plateau of China[J].Chin J Ecol,2018,37(12):3533-3540.DOI:10.13292/j.1000-4890.201812.017.

备注/Memo

备注/Memo:
收稿日期:2020-01-08
更新日期/Last Update: 2020-08-13