[1]陈黎,朱超,朱庆祥,等.NaN3处理对乌桕种子萌发及幼苗生长的影响[J].南京林业大学学报(自然科学版),2020,44(4):047-54.[doi:10.3969/j.issn.1000-2006.202002044]
 CHEN Li,ZHU Chao,ZHU Qingxiang,et al.Effects of NaN3 on Sapium sebiferum seed germination and seedling growth[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(4):047-54.[doi:10.3969/j.issn.1000-2006.202002044]
点击复制

NaN3处理对乌桕种子萌发及幼苗生长的影响/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年4期
页码:
047-54
栏目:
研究论文
出版日期:
2020-09-01

文章信息/Info

Title:
Effects of NaN3 on Sapium sebiferum seed germination and seedling growth
文章编号:
1000-2006(2020)04-0047-08
作者:
陈黎 朱超 朱庆祥 王翠鸣 鲍佳书 莫辰 施婷婷 万志兵
作者单位:黄山学院 生命与环境科学学院 , 安徽 黄山 245041; 南京林业大学风景园林学院 , 江苏 南京 210037
Author(s):
CHEN Li1 ZHU Chao1 ZHU Qingxiang1 WANG Cuiming1 BAO Jiashu1 MO Chen1 SHI Tingting2 WAN Zhibing1
(1.College of Life and Environment Sciences,Huangshan University,Huangshan 245041,China; 2.College of Landscape Architecture, Nanjing Forestry University,Nanjing 210037,China)
关键词:
乌桕 NaN诱变 幼苗生长 光合特性 突变育种
Keywords:
NaN mutagenesis seeding growth photosynthetic characteristics mutation breeding
分类号:
S722.1
DOI:
10.3969/j.issn.1000-2006.202002044
文献标志码:
A
摘要:
目的 研究乌桕( Sapium sebiferum)种子萌发、幼苗生长及光合特性对不同浓度NaN3诱变的响应差异,为乌桕幼苗早期优良品质突变体筛选技术提供理论依据。 方法 以乌桕种子为研究对象,设置NaN3浓度为0、5、10、15、20、25、30、35 mmol/L 8个诱变处理,测定其种子萌发率、幼苗生长指标、生物量、叶片的基本光合参数、叶片的叶绿素(SPAD值)和花青素(ACI值)等,比较其生长及光合能力的变化情况。 结果 不同浓度的NaN3对乌桕种子萌发、幼苗生长及光合能力的影响有显著差异, NaN3处理对乌桕种子的萌发率均起抑制作用,并随着浓度的增加抑制作用增强, 35 mmol/L时萌发率最低,抑制指数达到74.31%;20 mmol/L处理下幼苗苗高、生物量、根系的总长度、比表面积、根尖数等显著高于其他浓度处理,且对NaN3浓度的响应趋势基本一致,表现为“低促高抑”现象;幼苗叶片在C4处理下的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用率(EWUE)均最大,显著高于其他处理,胞间二氧化碳浓度(Ci)最低;NaN3处理对叶片的SPAD值和ACI值影响随着浓度的增加均呈现出先增后减趋势,当NaN3处理浓度为20 mmol/L时,SPAD和ACI值均最高;NaN3不同浓度处理,对叶片SPAD值的影响明显大于ACI值。 结论 随着NaN3浓度的增加,乌桕种子的萌发率呈降低趋势,接近半致死浓度为20~30 mmol/L,幼苗生长及PnGsTrEWUE、SPAD值和ACI值均表现为先增后减趋势,Ci和根冠比为先减后增趋势,对NaN3处理均有不同程度的响应。综合分析,诱变处理乌桕种子的适宜条件为NaN3浓度20 mmol/L处理 6 h。此研究为开展乌桕NaN3 诱变育种提供技术支持。
Abstract:
Objective We investigated the effects of NaN3 on Sapium sebiferum seed germination and seedling growth, so as to provide a theoretical basis for establishing a technical system for screening mutants of early quality of Sapium sebiferum. Method Eight contents of NaN3 (0, 5, 10, 15, 20, 25, 30, 35 mmol/L) were tested to study the effects of NaN3 solution concentration on the seed germination percentage and seedling growth. We treated the seeds of Sapium sebiferum by mutagenesis, measured the seedling rate, seedling growth index, biomass, basic photosynthetic parameters of leaves, SPAD value and ACI value of leaves, and compared the changes of their growth and photosynthetic capacity. Result The seed germination, seedling growth and the effects of photosynthetic capacity of Sapium sebiferum under different concentrations of NaN3 have significant differences. NaN3 treatment had an inhibiting effect on the germination rate of Sapium sebiferum, with the increase of concentrations, the inhibitory effect was enhanced. The germination rate was the lowest at 35 mmol/L, and the inhibitory index reached 74.31%. Seedling height, biomass, total root length, specific surface area and root tip number of seedlings treated with 20 mmol/L were significantly higher than those treated with other concentrations, and the response trend to NaN3 concentration was basically the same, showing a phenomenon of “low promoting and high inhibiting”. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and water utilization rate (EWUE) of seedling leaves under NaN3 20 mmol/L treatment were the highest, significantly higher than the other treatments, and the intercellular carbon dioxide concentration (Ci) was the lowest. The effect of NaN3 on the SPAD value and ACI value of the leaves increased first and then decreased with the increase of the concentration, and the effect on the SPAD value of the leaves was significantly greater than that of ACI value, but the 20 mmol/L treatment was the best and significantly greater than the other treatments. Conclusion With the increase of concentration of NaN3, Sapium sebiferum seed germination rate is lower and lower, closing to the half lethal concentration which is 20—30 mmol/L,seedling growth and Pn, Gs, Tr, EWUE, SPAD and ACI values show a trend of increasing initially and decreasing later, both Ci and root-cap ratio decrease initially and increase later, and have different responses to NaN3. Through the comprehensive analysis, the suitable condition for NaN3 mutation treatment of Sapium sebiferum seeds is 20 mmol/L for 6 h. These results provideu technical support for the research on NaN3 mutagenesis breeding of Sapium sebiferum, and can also be used as a theoretical reference for the breeding of new varieties of Sapium sebiferum, the promotion of superior varieties and the production practice.

参考文献/References:

1 SALIM K,FAHAD A,FIROZ A. Sodium Azide:a chemical mutagen for enhancement of agronomic traits of crop plants[J]. Environment & We an International Journal of Science &Technology,2009,4:1-21.
2 DONG Y P,LIAN Y,HE Q C,et al. The application and development of the chemical mutation technique applied in breeding Ⅰ:the chemical mutation technique and the effects[J]. Seed,2005,24(7):54-58.DOI:10.16590/j.cnki.1001-4705.2005.07.069.
3 OLSEN O,WANG X,WETTSTEIN D. Sodium azide mutagenesis: preferential generation of A·T→G·C transitions in the barley Ant18 gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(17):8043-8047.DOI:10.1073/pnas.90.17.8043.
4 REN X L,WANG Y,SHI Y W,et al. Effects of γ?ray and NaN3 treatments on tobacco seed vigor[J].Tobacco Science & Technology,2008,41(6):51-55.DOI:10.3969/j.issn.1002-0861.2008.06.013.
5 WANG N,LI M F,WANG C J,et al. Analysis on grain trait of a NaN3 mutagenized population in common wheat (Tritium aestivum) based on SmartGrain software[J]. Journal of Triticeae Crops,2015,35(9):1222-1228. DOI:10.7606/j.issn.1009-1041.2015.09.07.
6 XIE J H, XIA Y W, SHU Q Y. Studies on biological effects of rice by ion implantation and sodium azide combined treatment [J]. Journal of Nuclear Agricultural Sciences,1993,24(2):84-87.
7 JIANG Z F, LIU Z H, LI W B,et al. M1 mutagenic effect on soybean induced by NaN3 [J]. Journal of Nuclear Agricultural Sciences,2006,20(3):208-210. DOI:10.3969/j.issn.1000-8551.2006.03.011.
8  LIU L,WANG D,LI Y R,et al.The biological effects of 60Co?γ rays on Freesia refracta[J].J Nanjing For Univ(Nat Sci Ed),2019,43(1):186-192.DOI:10.3969/j.issn.1000-2006.201801024.
9
10 HU R Y,SUN Y H,WU B,et al. Effect of NaN3 on Cunninghamia lanceolata seed germination and seedlings growth[J].Journal of Northeast Forestry University,2018,46(5):6-11. DOI:10.13759/j.cnki.dlxb.2018.05.002.
11 LIU J H,KONG S M,WU H B,et al. Determination of the suitable mutation dose of NaN3 for Lagerstroemia indica L. [J]. Journal of Heilongjiang Bayi Agricultural University,2018,30(3):10-14. DOI:10.3969/j.issn.1002-2090.2018.03.002.
12
13
14 DENG X Z,WANG X G,XIANG S S,et al. Building techniques of cutting orchard in Sapium sebiferum [J]. Nonwood Forest Research,2010,28(4):93-98. DOI:10.3969/j.issn.1003-8981.2010.04.016.
15 PARRY M A,MADGWICK P J,BAYON C,et al. Mutation discovery for crop improvement[J]. Journal of Experimental Botany,2009,60(10):2817-2825. DOI:10.1093/jxb/erp189.
16 EMRANI S N,HARLOFF H, GUDI O,et al. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes[J]. Molecular Breeding,2015,35(1):1-11. DOI:10.1007/s11032-015-0236-2.
17 HUSSAIN S,KHAN W M,KHAN M S, et al. Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled) [J]. Pure Applied Biology,2017,6:226-236.
18 SCHNURBUSH T, M?LLERS C, BECKER H C. A mutant of Brassica napus with increased palmitic acid content[J]. Plant Breeding,2000,119(2):141–144. DOI:10.1046/j.1439-0523.2000.00481.x.
19 ALI H M A, SHAH S A. Evaluation and selection of rapeseed (Brassica napus L.) mutant lines for yield performance using augmented design[J]. Journal of Animal and Plant Sciences,2013,23:1125-1130.
20 SABLE A D,SABLES A D,SHEGOKAR S P,et al. Effect of sodium azide induction on germination percentage and morphological growth in two varieties of okra[J]. International Journal of Current Microbiology and Applied Sciences,2018,7(6):3586-3593. DOI:10.20546/ijcmas.2018.706.422.
21 YANG Z,PENG X M,PENG W Z. Progress of study on crop mutation breeding[J]. Actalaser Biology Sinica,2016,25(4):302-308. DOI:10.3969/j.issn.1007-7146.2016.04.003.
22 PENG B. Studies on mutation effects and mechanism of different chemical mutagens on the rice [D]. Changsha: Hunan Agricultural University,2008.
23 GUI R Y,LIU Y D,GUO X Q,et al. Effects of 137 Cs?γ rays irradiation and NaN3 treatment and protective enzyme activity for seeds of Phyllostachys heterocycla cv. pubescens [J]. Journal of Nuclear Agricultural Sciences,2009,23(3):400-404,412.
24 ASLAM R,BHAT T M,CHOUDHARY S,et al. Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD markers [J]. Journal of King Saud University?Science,2017,29:274-283. DOI:10.1016/j.jksus.2016.04.008.
25 SERRAT X,ESTEBAN R,GUIBOURT N,et al. EMS mutagenesis in mature seed?derived rice calli as a new method for rapidly obtaining TILLING mutant populations [J]. Plant Methods,2014,10(1):1-14. DOI:10.1186/1746-4811-10-5.
26 TALEBI A B, TALEBI A B, SHAHROKHIFAR B. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination[J]. American Journal of Plant Sciences,2012,3:1661-1665. DOI:10.4236/ajps.2012.312202.
27 LIU J X,SU Q,ZHOU L Q,et al. NaN3 mutagenesis on effects of antioxidant systems of seed germination and seedling of red bean[J]. Seed,2018,37(7):35-38. DOI:10.16590/j.cnki.1001-4705.2018.07.035.
28 GANDHI E S, DEVI A S ,MULLAINATHAN L. The effect of ethyl methane sulphonate and diethyl sulphate on chilli (Capsicum annuum L.) in M1 generation[J]. Internationa Letters of Natural Sciences,2014,10:18-23. DOI:10.18052/www.scipress.com/ilns.10.18.
29 LEE D K, KIM Y S, KIM J K. Determination of the optimal condition for ethylmethane sulfonate?mediated mutagenesis in a Korean commercial rice, Japonica cv. Dongjin[J]. Applied Biological Chemistry,2017,60(3):241-247. DOI:10.1007/s13765-017-0273-0.
30 ASLAM M,SAEED M S,SATTAR S,et al. Result of chemical mutagenesis on quantitative as well as qualitative traits of maize (Zea mays L.) [J]. International Journal of Pure & Applied Bioscience,2018,6 (1):12-15. DOI:10.18782/2320-7051.6087.
31 WANG P,WANG G,NI W Y,et al. Study on the biological effects of NaN3 in sunflower[J]. Chinese Journal of Oil Crop Sciences,1996,18(4):17-19.
32 FRITSCHIF B,RAY J D. Soybean leaf nitrogen,chlorophyll content,and chlorophyll a/b ratio[J]. Photosynthetica, 2007,45(1):92-98. DOI:10.1007/s11099-007-0014-4.
33 WANG Y N,DONG L N,DING Y F,et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four species of Corydalis[J]. Chinese Journal of Applied Ecology,2020,31(3):769-777. DOI: 10.13287/j.1001-9332.202003.004.
34 DAI S L,HONG Y.Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J].Scientia Agricultura Sinica,2016,49(3):529-542.DOI:10.3864/j.issn.0578-1752.2016.03.011.
35 RICARDO M, AKIHIKO A. Effect of gamma?radiation and sodium azide on quantitative characters in rice (Oryza sativa L.) [J]. Genetics And Molecular Biology,1998,21(1):81-85. DOI:10.1590/s1415-47571998000100014.
36 ARISHA M H,LIANG B K,SHAH S,et al. Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate[J]. Genetics and Molecular Research. 2014,13(4):10049-10061.DOI:10.4238/2014.november.28.9.
37 FAN F Q. The chemical mutation and tissue culture of Bougainvillea[D]. Taizhong:National Chung Hsing University,2012.
38 CAI M P. Comprehensive evaluation on landscape application of azaleas varieties and preliminary selection on its suitable mutation conditions[D].Fuzhou: Fujian Agriculture & Forestry University,2017.

相似文献/References:

[1]金雅琴,李冬林,丁雨龙,等.盐胁迫对乌桕幼苗光合特性及叶绿素含量的影响[J].南京林业大学学报(自然科学版),2011,35(01):029.[doi:10.3969/j.jssn.1000-2006.2011.01.007]
 JIN Yaqin,LI Donglin,DING Yulong,et al.Effects of salt stress on photosynthetic characteristics and chlorophyll content of Sapium sebiferum seedlings[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(4):029.[doi:10.3969/j.jssn.1000-2006.2011.01.007]
[2]李淑娴,刘菁菁,田树霞,等.乌桕种子休眠原因及解除方法研究[J].南京林业大学学报(自然科学版),2011,35(05):001.[doi:10.3969/j.jssn.1000-2006.2011.05.001]
 LI Shuxian,LIU Jingjing,TIAN Shuxia*.Study on the causes of Sapium sebiferum seed dormancy andthe methods for dormancy breaking[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(4):001.[doi:10.3969/j.jssn.1000-2006.2011.05.001]
[3]张往祥,张晓燕,曹福亮,等.涝渍胁迫下3个树种幼苗生理特性的响应[J].南京林业大学学报(自然科学版),2011,35(05):011.[doi:10.3969/j.jssn.1000-2006.2011.05.003]
 ZHANG Wangxiang,*.Effects of flooding stress on the physiological adaption metabolism of three tree species[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(4):011.[doi:10.3969/j.jssn.1000-2006.2011.05.003]
[4]廖卓毅,钱存梦,马秋月,等.乌桕种子成熟过程中种皮和胚乳超微结构观察[J].南京林业大学学报(自然科学版),2014,38(06):043.[doi:10.3969/j.issn.1000-2006.2014.06.009]
 LIAO Zhuoyi,QIAN Cunmeng,MA Qiuyue,et al.Ultrastructure of seed coat and endosperm in the development of Sapium sebiferum seed mature[J].Journal of Nanjing Forestry University(Natural Science Edition),2014,38(4):043.[doi:10.3969/j.issn.1000-2006.2014.06.009]

备注/Memo

备注/Memo:
收稿日期:2020-02-20
更新日期/Last Update: 2020-08-13