[1]孙晓波,陈佩珍,吴晓刚,等.马尾松PmAOX基因克隆与不同逆境胁迫表达分析[J].南京林业大学学报(自然科学版),2020,44(4):070-78.[doi:10.3969/j.issn.1000-2006.201911058]
 SUN Xiaobo,CHEN Peizhen,WU Xiaogang,et al.The cloning and expression analysis of PmAOX gene from Pinus massoniana under different stress[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(4):070-78.[doi:10.3969/j.issn.1000-2006.201911058]
点击复制

马尾松PmAOX基因克隆与不同逆境胁迫表达分析/HTML
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年4期
页码:
070-78
栏目:
研究论文
出版日期:
2020-09-01

文章信息/Info

Title:
The cloning and expression analysis of PmAOX gene from Pinus massoniana under different stress
文章编号:
1000-2006(2020)04-0070-09
作者:
孙晓波 陈佩珍 吴晓刚 吴帆 季孔庶
作者单位:南京林业大学林木遗传与生物技术省部共建教育部重点实验室,南方现代林业协同创新中心, 江苏 南京 210037
Author(s):
SUN Xiaobo CHEN Peizhen WU Xiaogang WU Fan JI Kongshu
(Co-Innovation Center for the Sustainable Forestry in Southern China,Key Laboratory of Forest Genetics and Biotechnology,Ministry of Education,Nanjing Forestry University,Nanjing 210037,China)
关键词:
马尾松 PmAOX 基因克隆 逆境胁迫 荧光定量 启动子
Keywords:
gene cloning adversity stress fluorescent quantification promoter
分类号:
S722;Q786
DOI:
10.3969/j.issn.1000-2006.201911058
文献标志码:
A
摘要:
目的 揭示马尾松(Pinus massoniana)抗氰呼吸途径的交替氧化酶(alternative oxidase,AOX)基因的功能。 方法 提取15年生马尾松不同组织RNA,运用RT-PCR及RACE技术克隆基因全长。以基因组DNA为模板,利用染色体步移法(chromosome walking,CK)克隆目的基因的启动子区域。通过qRT-PCR技术分析目的基因在不同组织及逆境胁迫下的表达。 结果 克隆获得基因全长为1 610 bp,开放阅读框(open reading finder, ORF)1 221 bp, 编码406个氨基酸,推测氨基酸含有与拟南芥AtAOX基因相同的双铁羧酸结构LET、 NERMHL、LEEA和RADE_H,将其命名为PmAOX。实时荧光定量PCR显示,PmAOX在马尾松花中表达量最高,根中最低;脱落酸(abscisic acid,ABA)(100 ?mol/L)胁迫后表达量逐渐下降,持续胁迫至24 h时,表达量增加至最大;经高温(42 ℃)、H2O2、NaCl(200 mol/L)、CO2(0.08% ~ 0.10%)、低温(4 ℃)及干旱(10% PEG6000)处理后,表达量均呈现先升高后降低的趋势;高温42 ℃ 处理至3 h时表达量最高;H2O2处理4 h时,表达量最高; NaCl胁迫至6 h时,表达量最高;CO2、低温及干旱处理至12 h时,表达量最高。克隆得到PmAOX 起始密码子上游1 081bp的启动子区域,经PlantCARE分析显示PmAOX启动子区域具有CAAT-box 及TATA-box 的基本顺式作用元件和低温、干旱等多个胁迫诱导元件,同时还包括脱落酸、茉莉酸甲酯、赤霉素、水杨酸在内的激素调控元件和光及昼夜节律响应元件。 结论 PmAOX 可能与马尾松抗逆性相关,并受激素的诱导和调控。
Abstract:
Objective The objective was to understand the function of the cyanide-resistant alternate oxidase (AOX) gene on the cyanide-resistant respiration pathway in Pinus massoniana. Method RNA was extracted from 15-year-old P. massoniana, and the full length gene was cloned using RT-PCR and RACE. Using genomic DNA as a template, the PmAOX promoter region was cloned using chromosome walking (CK). The expression of target genes in different tissues under different kinds of stress was analyzed using qRT-PCR. Result A full-length 1 610 bp gene was cloned to obtain a full-length open reading frame (ORF) of 1 221 bp encoding 406 amino acids. It was speculated that the amino acid sequence included the same ferrous carboxylic acid structure LET as the Arabidopsis AtAOX gene, NERMHL, LEEA, and RADE_H, and it was named PmAOX. The real-time fluorescence quantitative analysis showed that PmAOX expression was the highest in P. massoniana flowers, while it was the lowest in roots. ABA expression (100 ?mol/L) decreased under ABA (100 ?mol/L) stress and peaked 24 h after ABA (100 ?mol/L) stress. After high temperature (42 °C), H2O2, NaCl (200 mmol/L), CO2 (0.08% to 0.1%), low temperature (4 °C), and drought (10% PEG6000) stress, PmAOX expression increased before subsequently decreasing. The highest expression level was as follows: high temperature of 42 °C treatment at 3 h; H2O2 treatment at 4 h; NaCl stress at 6 h; CO2 , low temperature, and drought treatment at 12 h. A 1 081 bp promoter region upstream of the PmAOX start codon was cloned. Based on the PlantCARE analysis, we found that the PmAOX promoter region has basic cis-acting elements, including a CAAT-box, TATA-box, and multiple stress-inducing elements, such as low temperature and drought. It also includes hormonal regulatory elements, including abscisic acid (ABA), methyl jasmonate (MeJA), gibberellin (GA) and salicylic acid (SA), as well as light and circadian rhythm response elements. Conclusion PmAOX may be related to the resistance of P. massoniana, and it is induced and regulated by hormones.

参考文献/References:

1 XU F, YUAN W, LIANG H G, et al. The role of alternating oxidase and uncoupling proteins in plant mitochondria and their relationship[J]. Chinese Journal of Plant Physiology, 2009, 45(2): 105-110. DOI: 10.13592/j.cnki.ppj.2009.02.001.
2 WU Q, LI H Y, ZHANG L X, et al. Environmental stress and plant cyanide?resistant respiration[J]. Journal of Northwest Botanical Sinica, 2003, 23(1): 164-170. DOI: CNKI:SUN:DNYX.0.2003-01-032.
3 VANLERBERGHE G C, MCINTOSH L, alternative oxidase: From gene to function[J]. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48(48): 703-734. DOI: 10.1146/annurev.arplant. 48.1.703.
4 MILLENAAR, F.F, H. LAMBERS, The alternative oxidase: in vivo regulation and function[J]. Plant Biology, 2010, 5(1):2-15. DOI: 10. 1055/s-2003-37974.
5 CONSIDINE M, HOLTZAPFFEL R C, DAY D A, et al. Molecular distinction between alternative oxidase from monocots and dicots[J]. Plant Physiology, 2002, 129(3): 949-952. DOI: 10.1104/pp.004150.
6 NI Z, ZHOU P Y, XU M, et al. Development and characterization of chloroplast microsatellite markers for Pinus massoniana and their application in Pinus (Pinaceae) species[J]. Journal of Genetics, 2018, 97(2):1-7. DOI: 10.1007/s12041-018-0931-y.
7 XU C, WU X Q. Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsusunder drought stress[J]. Russian Journal of Plant Physiology, 2016, 63(5):709-717. DOI: 10.1134/S1021443716040178.
8 NI Z X, YE Y J, BAI T, XU M, et al. Complete chloroplast genome of Pinus massoniana (Pinaceae): Gene rearrangements, loss of ndh genes and short inverted repeats contraction expansion[J]. Molecules, 2017, 22(1):1528. DOI: 10.3390/molecules22091528.
9 JI K S, WANG Z R, CHEN T H, et al. Studies on endogenous inhibitory substances in Pinus massoniana cuttings[J]. Forestry Science, 1997, 33(2): 142-151.
10 JI K S, WANG Z R. Study on variation of rooting ability of Pinus massoniana cuttings[J]. Journal of Nanjing Forestry University, 1998, 22(3):66-70. DOI: 10.3969/j.jssn.1000-2006.1998.03.015.
11 YU X T, LU J H. A comparative study on the photosynthetic capacity of Pinus massoniana from different provenances[J]. Journal of Fujian Forestry College, 1991,11(2): 3-7. DOI:10.13324/j.cnki.jfcf.1991.02.001.
12 RUAN W C,PAN T,JI K S. Cloning and analysis of cellulose synthase gene PmCesA1 from Masson pine[J]. Molecular Plant Breeding, 2015,13(4): 861-870. DOI: CNKI:SUN:FZZW.0.2015-04-035.
13 WANG M. Construction of a subtractive library of Pinus massoniana and cloning of disease resistance related genes [D]. Changsha: Central South University of Forestry and Technology, 2010.
14 CAI Q, DING G J, WEN X P. Cloning of aquaporin PmPIP1 gene from Pinus massoniana and its expression under drought stress[J]. Journal of Zhejiang Agriculture and Forestry University, 2016,33(2): 191-200. DOI: 10.11833/j.issn.2095-0756.2016.02.002.
15 WANG X F, HE W L, CAI W J, et al. Sequencing and analysis of transcriptome of Masson pine[J]. Molecular Plant Breeding, 2013, 11(3):385-392. DOI: CNKI:SUN:FZZW.0.2013-03-019.
16 MCDONALD A, VANLERBERGHEG. Branched mitochondrial electron transport in the Animalia: presence of alternative oxidase in several animal phyla[J]. Iubmb Life, 2004, 56(6): 333-341. DOI: 10.1080/1521-6540400000876.
17 NEIMANIS, KARINA, STAPLES, et al. Identification, expression and taxonomic distribution of alternative oxidases in non?angiosperm plants[J]. Gene, 2013, 26(6): 275-286. DOI: 10.1016/j.gene.2013.04.072.
18 CLIFTON R, LISTER R, PARKER K L, et al. Stress?induced co?expression of alternative respiratory chain components in Arabidopsis thaliana[J]. Plant Molecular Biology, 2005, 58(2):193-194. DOI: 10.1007/s11103-005-5514-7.
19 THIRKETTLE WATTS D, MCCABE T C, CLIFTON R, et al. Analysis of the alternative oxidase promoters from soybean[J]. Plant Physiology, 2003, 133(3):1158-1161. DOI: 10.1104/pp.103.028183.
20 YAN Y C, LIN H H, LIANG H G, et al. Comparison of the effects of different low temperature stress on the induction of cyanide?resistant pathway and the expression of alternate oxidase in tobacco callus[J]. Chinese Journal of Plant Science, 2004, 21(3):296-305. DOI: CNKI:SUN:ZWXT.0.2004-03-006.
21 FENG H Q, MA J, LI H Y, et al. Expression and functional analysis of AOX1 gene family in yellowing rice seedlings during greening[J]. Molecular Plants, 2006, 32(3): 300-306. DOI: CNKI:SUN:ZWSI.0.2006-03-006.
22 WANG J, WANG X, LIU C, et al. The NgAOX1a gene cloned from Nicotiana glutinosa is implicated in the response to abiotic and biotic stresses[J]. Bioscience Reports, 2008, 28(5):259-266. DOI: 10.1042/BSR20080025.
23 SIEDOW J N , UMBACH A L. Plant mitochondrial electron transfer and molecular biology[J]. Plant Cell, 1995, 7(7): 821-827. DOI: 10.1105/tpc.7.7.821.
24 LI Y M, ZHU L, YANG J H, et al. Cloning and analysis of watermelon oxidase AOX2 gene[J]. Journal of Fruit Science, 2011(5):171-176. DOI: CNKI:SUN:GSKK.0.2011-05-031.
25 CONSIDINE M J, DALEY D O, WHELAN J. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango[J]. Plant Physiology, 2001, 126(5):1619-1629. DOI: 10.1104/pp.126.4.1619.
26 BARTOLI C G, GOMEZ F, GERGOFF G, et al. Up?regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions[J]. Journal of Experimental Botany, 2005, 56(415):1269-1276. DOI: 10.1093/jxb/eri111.
27 VALYA V, LYUDMILA S S, KLIMENTINA D, et al. Variety?specific response of wheat (Triticum aestivum L.) leaf mitochondria to drought stress[J]. Journal of Plant Research, 2009, 122(4):445-454. DOI: 10.1007/s10265-009-0225-9.
28 WEN J, LIANG H. Effects of KCN and NaN3 pretreatment on the cyanide?resistant respiration in tobacco callus[J]. Acta Bontanica Sinica, 1995, 37(9):711-717.
29 BEGCY K, MARIANO E D, MATTIELLO L, et al. An arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants[J]. Plos One, 2011, 6(8):23776-23784. DOI: 10.1371/journal.pone.0023776.
30
31 YAN Y C, LIN H H, LIANG H G, et al. Comparison of the effects of difterent low temperature stresses on the induction of the cyanide?resistant alternative pathway and the expression of alternative oxidase in tobacco callus[J].Chin Bull Bot, 2004, 21(3):296-305.
32 MOHANAPRIYA G, BHARADWAJ R, NOCEDA C, et al. Alternative oxidase (AOX) senses stress levels to coordinate auxin?induced reprogramming from seed germination to somatic embryogenesis-a role relevant for seed vigor prediction and plant robustness[J]. Frontiers in Plant Science, 2019, 12(2):1131-1134. DOI: 10.3389/fpls.2019.01134.
33 HILAL M. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidase expression in developing soybean roots[J]. Plant Physiology, 1998, 117(3):695-701. DOI: 10.1104/pp.117.2.695.
34 ANNICCHIARICO P, NAZZICARI N, PECETTI L, et al. Pea genomic selection for Italian environments[J]. BMC Genomics, 2019(4):599-603. DOI: 10.1186/s12864-019-5920-x.
35 ANDJELKOVI? A, OLIVEIRA M T, CANNINO G, et al. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies[J]. Scientific Reports, 2015, 5(3):295-301. DOI: 10.1038/srep18295.
36 PURVIS A C, SHEWFELT R L. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues?[J]. Physiologia Plantarum, 1993, 88(4):712-718. DOI: 10.1111/j.1399-3054.1993.tb01393.x.
37 SZABADOS L, CHARRIER B, KONDOROSI A, et al. New plant promoter and enhancer testing vectors[J]. Mol Breed, 1995, 1(4): 419–423. DOI: 10.1007/BF01248419.
38 LI H X, DONG X F, GAO J. Advances in the promoter of pichia pastoris alcohol oxidase gene AOX1[J]. Biotechnology, 2013, 1(4): 87-91. DOI: CNKI:SUN:SWJS.0.2013-04-021.

相似文献/References:

[1]汪佑宏,顾炼百,刘启明,等.马尾松锯材在热压干燥过程中的传质数学模型[J].南京林业大学学报(自然科学版),2008,32(02):071.[doi:10.3969/j.jssn.1000-2006.2008.02.016]
[2]高景斌,徐六一,叶建仁*,等.运用MuPS标记识别马尾松抗松材线虫病个体[J].南京林业大学学报(自然科学版),2009,33(03):001.[doi:10.3969/j.jssn.1000-2006.2009.03.001]
 GAO Jing bin,XU Liu yi,YE Jian ren*,et al.Using MuPS marker technique to identify individual of Pinus massoniana resistance to pine wilt disease[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(4):001.[doi:10.3969/j.jssn.1000-2006.2009.03.001]
[3]徐超,吴小芹*,张红岩.D精氨酸对菌根化马尾松植株内源多胺和抗旱能力的影响[J].南京林业大学学报(自然科学版),2009,33(04):019.[doi:10.3969/j.jssn.1000-2006.2009.04.004]
 XU Chao,WU Xiao qin*,ZHANG Hong yan.Impact of DArg on drought resistance and endogenous polyamines in mycorrhizal Pinus massoniana[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(4):019.[doi:10.3969/j.jssn.1000-2006.2009.04.004]
[4]高悦,吴小芹*,孙民琴.马尾松不同菌根苗对氮磷钾的吸收利用[J].南京林业大学学报(自然科学版),2009,33(04):077.[doi:10.3969/j.jssn.1000-2006.2009.04.016]
 GAO Yue,WU Xiao qin*,SUN Min qin.Effects of ectomycorrhizal seedlings of masson pine on absorption and utilization of N, P and K[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(4):077.[doi:10.3969/j.jssn.1000-2006.2009.04.016]
[5]张一,周志春,金国庆,等.马尾松双列杂交亲本遗传距离与杂种生长优势相关性分析[J].南京林业大学学报(自然科学版),2010,34(01):009.[doi:10.3969/j.jssn.1000-2006.2010.01.003]
 ZHANG Yi,ZHOU Zhi chun,JIN Guo qing,et al.Genetic distances of parents of Pinus massoniana and relationship between growth traits and heterosis of progeny[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):009.[doi:10.3969/j.jssn.1000-2006.2010.01.003]
[6]王楚,翟华敏*,刘婧怡,等.耐热耐碱木聚糖酶对马尾松KP浆的助漂性能[J].南京林业大学学报(自然科学版),2010,34(03):031.[doi:10.3969/j.jssn.1000-2006.2010.03.007]
 WANG Chu,ZHAI Hua min*,LIU Jing yi,et al.Effect of thermostable and alkaline tolerant xylanase pretreatment on the bleaching properties of pine kraft pulp[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):031.[doi:10.3969/j.jssn.1000-2006.2010.03.007]
[7]洪永辉,林文奖,黄以法.12年生马尾松种子园半同胞家系生长性状变异分析与优良家系选择[J].南京林业大学学报(自然科学版),2010,34(04):026.[doi:10.3969/j.jssn.1000-2006.2010.04.006]
 HONG Yong hui,LIN Wen jiang,HUANG Yi fa.Selection of excellent families and analysis on growth variation for the 12yearold halfsib family of seed orchard of Pinus massoniana[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):026.[doi:10.3969/j.jssn.1000-2006.2010.04.006]
[8]郭峰,周运超*.不同密度马尾松林针叶养分含量及其转移特征[J].南京林业大学学报(自然科学版),2010,34(04):093.[doi:10.3969/j.jssn.1000-2006.2010.04.021]
 GUO Feng,ZHOU Yun chao*.Foliar nutrient contents and translocation features in different density of Pinus massoniana plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):093.[doi:10.3969/j.jssn.1000-2006.2010.04.021]
[9]何龙喜,吴小芹*,俞禄珍,等.不同抗性松树与松材线虫互作中H2O2 及其氧化酶活性的差异[J].南京林业大学学报(自然科学版),2010,34(06):013.[doi:10.3969/j.jssn.1000-2006.2010.06.004]
 HE Long xi,WU Xiao qin*,YU Lu zhen,et al.The difference of H2O2 and oxidative enzyme in the interaction of different resistance pines and Bursaphelenchus xylophilus[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(4):013.[doi:10.3969/j.jssn.1000-2006.2010.06.004]
[10]鲁国华,叶建仁.安徽省马尾松树干内真菌种类研究[J].南京林业大学学报(自然科学版),2011,35(01):132.[doi:10.3969/j.jssn.1000-2006.2011.01.030]
 LU Guohua,YE Jianren.Study on the fungi species in stem of Pinus massoniana in Anhui province[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(4):132.[doi:10.3969/j.jssn.1000-2006.2011.01.030]

备注/Memo

备注/Memo:
收稿日期:2019-11-28
更新日期/Last Update: 2020-08-13