[1]吴 慧,王树力*,郝玉琢,等.阿什河流域6种人工林叶片-凋落物-土壤系统的养分分配与利用格局[J].南京林业大学学报(自然科学版),2020,44(05):100-108.[doi:10.3969/j.issn.1000-2006.201904021]
 WU Hui,WANG Shuli*,HAO Yuzhuo,et al.Nutrient distribution and utilization patterns in six plantations leaf-litter-soil system in the Ashi River Basin[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):100-108.[doi:10.3969/j.issn.1000-2006.201904021]
点击复制

阿什河流域6种人工林叶片-凋落物-土壤系统的养分分配与利用格局
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
100-108
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Nutrient distribution and utilization patterns in six plantations leaf-litter-soil system in the Ashi River Basin
文章编号:
1000-2006(2020)05-0100-09
作者:
吴 慧王树力*郝玉琢周 磊
(东北林业大学林学院,黑龙江 哈尔滨 150040)
Author(s):
WU HuiWANG Shuli* HAO Yuzhuo ZHOU Lei
(College of Forestry, Northeast Forestry University, Harbin 150040, China)
关键词:
人工林 叶片 凋落物 土壤 养分格局 重吸收率 黑龙江阿什河流域
Keywords:
plantation leaf litter soil nutrient pattern resorption efficiency Ashi River Basin Heilongjiang Province
分类号:
S714.2
DOI:
10.3969/j.issn.1000-2006.201904021
文献标志码:
A
摘要:
【目的】分别从人工林叶片、凋落物、土壤养分含量及化学计量比的差异,叶片-凋落物养分重吸收的差异,土壤有效养分及其活化的差异等方面,探究黑龙江阿什河流域6种人工林生态系统的养分吸收与利用策略,明确人工针叶林和阔叶林间以及不同树种间叶片-凋落物-土壤系统养分分配格局的差异,从养分优化利用和养分资源合理配置的角度考虑,推断适宜的互补树种,为流域森林景观的恢复和人工林的经营提供依据。【方法】以东北林业大学实验林场森林培育实验站次生林带状皆伐后营造的位置相近、立地条件基本一致的29年生红松、长白落叶松、红皮云杉、水曲柳、黄檗、胡桃楸人工林为研究对象,通过野外调查取样,室内使用碳氮分析仪测定叶片、凋落物、土壤C含量,使用凯氏定氮仪测定叶片和凋落物的N含量,硫酸-高氯酸消化-钼锑抗比色法测定叶片和凋落物的P含量,连续流动分析仪测定土壤的N含量、铵态氮(NH+4-N)及硝态氮(NO-3-N)含量,硫酸-高氯酸消化-钼锑抗比色法测定土壤的P含量,HCl-H2SO4浸提法测定土壤的有效磷含量。运用生态化学计量学的研究方法,分析各林分叶片-凋落物-土壤系统的养分含量及其生态化学计量特征,确定各凋落物营养的重吸收及土壤有效养分的供应特征。【结果】①针叶林叶片P含量(1.55 g/kg)显著低于阔叶林叶片P含量(2.02 g/kg)(P<0.05, F=16.92,df=1)。针叶林土壤C、P含量(47.75、1.17 g/kg)显著低于阔叶林土壤C、P含量(76.35、1.47 g/kg)(P<0.05, FC含量=75.15, FP含量=9.91,df=1)。6种林分中,水曲柳林叶片的N含量(19.64 g/kg)(P<0.05, F=5.26,df=5)、凋落物C、N、P含量(P<0.05, FC含量=2.34, FN含量=1.60, FP含量=6.74,df=5)和土壤的C、N、P含量(P<0.05, FC含量=154.84, FN含量=14.21, FP含量=53.55,df=5)均相对较高。红皮云杉林叶片P含量(1.30 g/kg)(P<0.05, F=36.71,df=5),长白落叶松林凋落物C含量(P<0.05, F=2.34,df=5),红松林凋落物N含量(P<0.05, F=1.60,df=5)均相对较低。②针叶林叶片碳磷质量比(C/P)值(314.84)显著高于阔叶林叶片C/P值(251.03)(P<0.05, F=20.43,df=1),阔叶林土壤C/P值(53.20)显著高于针叶林土壤C/P值(40.71)(P<0.05, F=15. 38,df=1)。6种林分中,红皮云杉林叶片C/P值(359.24)较高(P<0.05, F=35.02,df=5),水曲柳林叶片碳氮质量比(C/N)值(24.15)相对较低(P<0.05, F=11.42,df=5)。胡桃楸林土壤C/N值(19.82)显著高于长白落叶松林土壤的C/N值(5.62)(P<0.05, F=12.40,df=5)。③针叶林元素重吸收率为N的(25.31%)>P的(14.41%)。阔叶林P重吸收率(29.84%)显著高于针叶林P重吸收率(14.41%)(P<0.05, F=7.30,df=1)。6种林分中,水曲柳N重吸收率(P<0.05, F=13.66,df=5)、黄檗P重吸收率(P<0.05, F=60.40,df=5)相对较高。④阔叶林土壤有效P含量及有效P比率(11.74 mg/kg、8.22×10-3)显著小于针叶林(16.59 mg/kg、14.24×10-3)(P<0.05, F有效P含量=7.32, F有效P比率=11.84,df=1)。6种林分中,红松林和胡桃楸林土壤对N的活化能力相对较强,红松林和长白落叶松林土壤有效P的供应能力及其活化能力相对较强。【结论】针叶林叶片P元素利用率高,元素重吸收率为N>P。阔叶林土壤C、P含量较高、有效P积累能力弱、有效P含量及比例均显著低于针叶林,但其P的重吸收率显著高于针叶林。从优化养分资源角度考虑,针叶树种与阔叶树种混交,如红松与水曲柳、长白落叶松与水曲柳混交可以弥补针叶纯林养分分配与利用格局上的不足
Abstract:
【Objective】This study aimed to provide a theoretical basis for the recovery of the forest landscape and optimal management of plantations in the Ashi River Basin. The differences in leaf-litter-soil nutrient content and stoichiometric ratio, leaf-litter-nutrient resorption and soil available nutrients and their activation were investigated to explore the nutrient absorption and utilization strategies in plantations of six tree species. Differences in the nutrient distribution patterns between plantations of coniferous and broad-leaved species were also investigated, from the point of rational allocation and optimal utilization of nutrient resources, complementary tree species were inferred. 【Method】The study was conducted at the Forest Cultivation Experiment Station of the Northeast Forestry University in plantations located on secondary forest strip clear cutting land with the same site conditions.The study plantations were 29 years old and contained the following six species: Pinus koraiensis, Larix olgensis, Picea koraiensis, Fraxinus mandshurica, Phellodendron amurense and Juglans mandshurica. Applying the research method of ecological stoichiometry, the nutrient content and stoichiometric characteristics of the leaf-litter-soil system of each plantation were analyzed, and the nutrient resorption of the litter and the supply characteristics of soil available nutrients were confirmed. This was accomplished through field survey sampling and laboratory analysis. A Carbon and nitrogen analyzer was used to determine the carbon(C)content in leaves, litter, and soil and a Kjeldahl instrument was used to determine the nitrogen(N)content in leaves and litter. The soil N content as ammonium nitrogen(NH+4-N)and nitrate nitrogen(NO-3-N)was determined by using a continuous flow analyzer. Phosphorus(P)content was determined by sulfuric-perchloric acid digestion and molybdenum-antimony colorimetry. The soil P content was determined by sulfuric-perchloric acid digestion and molybdenum-antimony colorimetry. Soil available P was determined by HCl-H2SO4 extraction.【Result】① The leaf P content of the coniferous plantations(1.55 g/kg)was significantly lower than that of the broad-leaved plantations(2.02 g/kg)(P < 0.05, F =16.92, df=1)and the C and P content in the coniferous plantations(47.75, 1.17 g/kg)was significantly lower than in the broad-leaved plantations(76.35, 1.47 g/kg)(P<0.05, FC content=75.15, FP content=9.91, df=1). Within all six stands, the leaf N content(19.64 g/kg)(P < 0.05, F =5.26, df=5), C, N and P content in the litter(P < 0.05, FC content=2.34, FN content=1.60, FP content=6.74, df=5)and the soil(P< 0.05, FC content=154.84, FN content=14.21, FP content=53.55, df=5)of the F. mandshurica plantation was higher than those in the other plantations. Leaf P content of the P. koraiensis plantation(1.30 g/kg)(P < 0.05,F =36.71,df=5), litter C content of the L. olgensis plantation(P < 0.05,F =2.34,df=5)and litter N content of the P. koraiensis plantation(P < 0.05,F=1.60,df=5)was lower than those for the other plantations. ② The leaf C/P of the coniferous plantations(314.84)was significantly higher than that of the broad-leaved plantations(251.03)(P < 0.05, F =20.43, df=1)whereas the soil C/P of the broad-leaved plantations(53.20)was significantly higher than that of the coniferous plantations(40.71)(P<0.05, F=15.38, df=1). Within all six stands, the leaf C/P of the P. koraiensis plantation(359.24)was the highest(P < 0.05, F =35.02, df=5), and C/N in the leaves of the F. mandshurica plantation(24.15)was the lowest(P<0.05, F =11.42, df=5). The soil C/N of the J. mandshurica plantation(19.82)was significantly higher than that of the L. olgensis plantation(5.62)(P<0.05, F =12.40, df=5). ③ The N resorption efficiency(25.31%)was significantly higher than the P resorption efficiency(14.41%)in the coniferous plantations and the P resorption efficiency of the broad-leaved plantations(29.84%)was significantly higher than that of the coniferous plantations(14.41%)(P < 0.05, F =7.30, df=1). Within all six stands, the N resorption efficiency of F. mandshurica(P < 0.05, F =13.66, df=5)and the P resorption efficiency of P. amurense(P < 0.05, F =60.40, df=5)were higher than for the litter of the other stands. ④ The ratio of available P content and available P in the broad-leaved plantations(11.74 mg/kg, 8.22×10-3)was significantly lower than that in the coniferous plantations(16.59 mg/kg, 14.24×10-3)(P < 0.05, Favailable P content=7.32, Favailable P ratio=11.84, df=1). Within all six stands, the soil activation ability to N of the P. koraiensis plantation and the J. mandshurica plantation was stronger than those that of other plantations, and the soil supply ability and activation ability of available P in the P. koraiensis and the L. olgensis plantations was stronger than in the other plantations. 【Conclusion】The rate of P utilization in the leaves of coniferous plantation trees was higher than that in broad-leaved plantation trees, and the N resorption efficiency was higher than the P resorption efficiency. The C and P content in the soil of the broad-leaved plantations was higher than that of the coniferous plantations, while the available P accumulation ability was weak. The available P content and ratio of the broad-leaved plantations was significantly lower than for the coniferous plantations, but the P resorption efficiency was significantly higher than that for the coniferous plantations. From the point of optimal utilization of nutrients and rational allocation of nutrient resources, coniferous and broad-leaved tree mixes, such as P. koraiensis and F. mandshurica, and L. olgensis and F. mandshurica could create a complementary nutrient allocation and utilization pattern

参考文献/References:


[1] 王绍强,于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报,2008,28(8): 3937-3947. WANG S Q,YU G R. Ecological stoichiometry characteristics of ecosystem carbon,nitrogen and phosphorus elements[J]. Acta Ecol Sin,2008,28(8): 3937-3947. DOI:10.3321/j.issn:1000-0933.2008.08.054.
[2] 潘复静,张伟,王克林,等. 典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征[J]. 生态学报,2011,31(2): 335-343. PAN F J,ZHANG W,WANG K L,et al. Litter C:N:P ecological stoichiometry character of plant communities in typical Karst Peak-Cluster Depression[J]. Acta Ecol Sin,2011,31(2): 335-343.
[3] 刘建明,姚颖,刘忠玲,等.不同林分密度榛子天然林土壤养分特征研究[J].森林工程,2018,34(3):1-5.LIU J M,YAO Y,LIU Z L,et al.Study on nutrient characteristics of soil in natural Corylus forest stands of different stocking densities[J].For Eng,2018,34(3):1-5. DOI:10.16270/j.cnki.slgc.2018.03.018
[4] 李娇,蒋先敏,尹华军,等. 不同林龄云杉人工林的根系分泌物与土壤微生物[J]. 应用生态学报,2014,25(2): 325-332. LI J,JIANG X M,YIN H J,et al. Root exudates and soil microbes in three Picea asperata plantations with different stand ages[J]. Chin J Appl Ecol,2014,25(2): 325-332. DOI:10.13287/j.1001-9332.2014.0035.
[5] 曾昭霞,王克林,刘孝利,等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报,2015,39(7): 682-693. ZENG Z X,WANG K L,LIU X L,et al. Stoichiometric characteristics of plants,litter and soils in Karst plant communities of Northwest Guangxi[J]. Chin J Plant Ecol,2015,39(7): 682-693. DOI:10.17521/cjpe.2015.0065.
[6] 郝玉琢,周磊,吴慧,等. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版),2019,43(4): 101-108. HAO Y Z,ZHOU L,WU H,et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations[J]. J Nanjing For Univ(Nat Sci Ed),2019,43(4): 101-108. DOI:10.3969/j.issn.1000-2006.201806021.
[7] 阎恩荣,王希华,周武. 天童常绿阔叶林演替系列植物群落的N:P化学计量特征[J]. 植物生态学报,2008,32(1): 13-22. YAN E R,WANG X H,ZHOU W. N:P stoichiometry in secondary succession in evergreen broad-leaved forest,Tiantong,East China[J]. Chin J Plant Ecol,2008,32(1): 13-22.
[8] 李明军,喻理飞,杜明凤,等. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报,2018,38(21): 7772-7781. LI M J,YU L F,DU M F,et al. C,N,and P stoichiometry and their interaction with plants,litter,and soil in a Cunninghamia lanceolata plantation with different ages[J]. Acta Ecol Sin,2018,38(21): 7772-7781. DOI:10.5846/stxb201708221509.
[9] 王树力,郝玉琢,周磊,等. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态[J]. 北京林业大学学报,2018,40(10): 24-33. WANG S L,HAO Y Z,ZHOU L,et al. Seasonal variations of leaf nutrient element concentrations and their stoichiometric characteristics in Fraxinus mandshurica plantations[J]. J Beijing Fore Univ,2018,40(10): 24-33. DOI:10.13332/j.1000-1522.20180170.
[10] 张韫. 土壤·水·植物理化分析教程[M]. 北京: 中国林业出版社,2011:70-79. ZHANG Y. Physical and chemical analysis of soil,water and plants[M].Beijing:China Forestry Publishing House,2011:70-79.
[11] 白雪娟,曾全超,安韶山,等. 黄土高原不同人工林叶片-凋落叶-土壤生态化学计量特征[J]. 应用生态学报,2016,27(12): 3823-3830. BAI X J,ZENG Q C,AN S S,et al. Ecological stoichiometry characteristics of leaf-litter-soil in different plantations on the Loess Plateau,China[J]. Chin J Appl Ecol,2016,27(12): 3823-3830. DOI:10.13287/j.1001-9332.201612.035.
[12] 任悦,高广磊,丁国栋,等. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征[J]. 应用生态学报,2019,30(3): 743-750. REN Y,GAO G L,DING G D,et al. Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var. mongolica plantations[J]. Chin J Appl Ecol,2019,30(3): 743-750. DOI: 10.13287/j.1001-9332.201903.040.
[13] OLANDER L P,VITOUSEK P M. Regulation of soil phosphatase and chitinase activityby N and P availability[J]. Biogeochemistry,2000,49(2): 175-191. DOI:10.1023/A:1006316117817.
[14] VERGUTZ L,MANZONI S,PORPORATO A,et al. Global resorption efficiencies and concentritions of carbon and nutrients in leaves of terrestrial plants[J]. Ecol Monogr,2012,82(2): 205-220. DOI: 10.1890/11-0416.1.
[15] 聂兰琴,吴琴,尧波,等. 鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征[J]. 生态学报,2016,36(7): 1898-1906. NIE L Q,WU Q,YAO B,et al. Leaf litter and soil carbon,nitrogen,and phosphorus stoichiometry of dominant plant species in the Poyang Lake wetland[J]. Acta Ecol Sin,2016,36(7): 1898-1906. DOI:10.5846/stxb201409301944.
[16] BAUHUS J,PARÉ D,COTE L. Effects of tree species,stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biol Biochem,1998,30(8/9): 1077-1089. DOI:10.1016/s0038-0717(97)00213-7.
[17] 王薪琪,王传宽,韩轶. 树种对土壤有机碳密度的影响: 5种温带树种同质园试验[J]. 植物生态学报,2015,39(11): 1033-1043. WANG X Q,WANG C K,HAN Y. Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species[J]. Chin J Plant Ecol,2015,39(11): 1033-1043. DOI:10.17521/cjpe.2015.0100.
[18] QIAO L,SCHAEFER D A,ZOU X M. Variations in net litter nutrient input associated with tree species influence on soil nutrient contents in a subtropical evergreen broad-leaved forest[J]. Chinese Sci Bull,2014,59(1): 46-53. DOI:10.1007/s11434-013-0019-2.
[19] CARRINO-KYKER S R,KLUBER L A,PETERSEN S M,et al. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests[J]. Fems Microbiol Ecol,2016,92(3): fiw024. DOI:10.1093/femsec/fiw024.
[20] 罗艳,贡璐,朱美玲,等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报,2017,37(24): 8326-8335. LUO Y,GONG L,ZHU M L,et al. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert[J]. Acta Ecol Sin,2017,37(24): 8326-8335. DOI:10.5846/stxb201611222379.
[21] AGREN G I,BOSATTA E. Theoretical ecosystem ecology: understanding element cycles [M]. England: Cambridge University Press,1998.
[22] 庄明浩,李迎春,郭子武,等. CO2浓度升高对毛竹和四季竹叶片主要养分化学计量特征的影响[J]. 植物营养与肥料学报,2013,19(1): 239-245. ZHUANG M H,LI Y C,GUO Z W,et al. Effects of elevated CO2 on the leaf nutrient stoichiometrical characteristics in Phyllostachys edulis and Oligostachyum lubricum[J]. Plant Nutr Fertil Sci,2013,19(1): 239-245. DOI:10.11674/zwyf. 2013. 0129.
[23] 邢雪荣,韩兴国,陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报,2000,11(5): 785-790. XING X R,HAN X G,CHEN L Z. A review on research of plant nutrient use efficiency[J]. Chin J Appl Ecol,2000,11(5): 785-790. DOI:10.13287/j.1001-9332.2000.0189.
[24] 王晶苑,王绍强,李纫兰,等. 中国四种森林类型主要优势植物的C:N:P化学计量学特征[J]. 植物生态学报,2011,35(6): 587-595. WANG J Y,WANG S Q,LI R L,et al. C:N:P stoichiometric characteristics of four forest types' dominant tree species in China[J]. Chin J Plant Ecol,2011,35(6): 587-595. DOI:10.3724/SP.J.1258.2011.00587.
[25] 刘泽彬, 程瑞梅, 肖文发,等. 三峡库区库首森林生态系统植物叶片碳氮磷化学计量特征研究[J]. 南京林业大学学报(自然科学版),2017,41(2): 27-33. LIU Z B,CHEN R M,XIAO W F,et al. Stoichiometric characteristics of leaf carbon,nitrogen and phosphorus in forest ecosystems in the head of the Three Gorges Reservoir Area[J]. J Nanjing For Univ(Nat Sci Ed),2017,41(2): 27-33.DOI:10.3969/j.issn.1000-2006.2017.02.005.
[26] 陈印平,夏江宝,赵西梅,等. 黄河三角洲典型人工林土壤碳氮磷化学计量特征[J]. 土壤通报,2017,48(2): 392-398. CHEN Y P,XIA J B,ZHAO X M,et al. Effect of different plantation types on soil ecological stoichiometry in Yellow Delta[J]. Chin J Soil Sci,2017,48(2): 392-398. DOI:10.19336/j.cnki.trtb.2017.02.20.
[27] 王建林,钟志明,王忠红,等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报,2014,34(22): 6678-6691. WANG J L,ZHONG Z M,WANG Z H,et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau[J]. Acta Ecol Sin,2014,34(22): 6678-6691. DOI:10.5846/stxb201302130263.
[28] BERG B,MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environ Rev,1997,5(1): 1-25. DOI:10.1139/a96-017.

相似文献/References:

[1]张正雄,周新年,陈玉凤,等.汽车运材对人工林伐区林地土壤的影响[J].南京林业大学学报(自然科学版),2008,32(01):103.[doi:10.3969/j.jssn.1000-2006.2008.01.024]
 ZHANG Zheng-xiong,ZHOU Xin-nian,CHEN Yu-feng,et al.Effect of wood transportation by truck on the road soil properties of artificial forest cutting area[J].Journal of Nanjing Forestry University(Natural Science Edition),2008,32(05):103.[doi:10.3969/j.jssn.1000-2006.2008.01.024]
[2]何斌,黄恒川,曹明,等.秃杉人工林微量元素含量、积累与分配特征[J].南京林业大学学报(自然科学版),2009,33(01):069.[doi:10.3969/j.jssn.1000-2006.2009.01.014]
 HE Bin,HUANG Heng chuan,CAO Ming,et al.Concentration, accumulation and distribution of microelements in Taiwania flousiana plantation[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(05):069.[doi:10.3969/j.jssn.1000-2006.2009.01.014]
[3]王大明,赵尘,李兆山.人工林采伐作业物质流分析[J].南京林业大学学报(自然科学版),2009,33(01):139.[doi:10.3969/j.jssn.1000-2006.2009.01.030]
 WANG Da ming,ZHAO Chen,LI Zhao shan.Analysis of the material flow of forest plantation harvesting operation[J].Journal of Nanjing Forestry University(Natural Science Edition),2009,33(05):139.[doi:10.3969/j.jssn.1000-2006.2009.01.030]
[4]黄承标,刘运华,秦武明,等.3种植被恢复过程中水土流失规律的研究[J].南京林业大学学报(自然科学版),2010,34(02):059.[doi:10.3969/j.jssn.1000-2006.2010.02.013]
 HUANG Cheng biao,LIU Yun hua,QIN Wu ming,et al.Study on the water and soil erosion rules during the three types of vegetation recovery process[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(05):059.[doi:10.3969/j.jssn.1000-2006.2010.02.013]
[5]陈平,万福绪*,顾汤华,等.徐州石灰岩丘陵区不同人工林林下植物多样性研究[J].南京林业大学学报(自然科学版),2010,34(05):023.[doi:10.3969/j.jssn.1000-2006.2010.05.005]
 CHEN Ping,WAN Fu xu*,GU Tang hua,et al.Study on the species diversity of the different plantation types in the limestone hilly areas of Xuzhou city[J].Journal of Nanjing Forestry University(Natural Science Edition),2010,34(05):023.[doi:10.3969/j.jssn.1000-2006.2010.05.005]
[6]刘成刚,戎宇,薛建辉*,等.喀斯特山地不同人工林土壤酶活性与草本层结构特征的关系[J].南京林业大学学报(自然科学版),2011,35(02):099.[doi:10.3969/j.jssn.1000-2006.2011.02.021]
 LIU Chenggang,RONG Yu,XUE Jianhui*,et al.Relationship between soil enzyme activities and structural characteristics of herbaceous layer in different plantations in Karst area[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(05):099.[doi:10.3969/j.jssn.1000-2006.2011.02.021]
[7]戎宇,刘成刚,薛建辉*.喀斯特山地不同人工林土壤特性差异与综合评价[J].南京林业大学学报(自然科学版),2011,35(02):108.[doi:10.3969/j.jssn.1000-2006.2011.02.023]
 RONG Yu,LIU Chenggang,XUE Jianhui*.Difference and integrated evaluation on soil fertility properties of different plantations in Karst area[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(05):108.[doi:10.3969/j.jssn.1000-2006.2011.02.023]
[8]张鸽香,徐娇,王国兵,等.城市3种类型人工林土壤的呼吸动态特征[J].南京林业大学学报(自然科学版),2011,35(03):008.[doi:10.3969/j.jssn.1000-2006.2011.03.009]
 ZHANG Gexiang,XU Jiao,WANG Guobing,et al.Seasonal variations of soil respiration in three different urban plantations in Nanjing[J].Journal of Nanjing Forestry University(Natural Science Edition),2011,35(05):008.[doi:10.3969/j.jssn.1000-2006.2011.03.009]
[9]方升佐,田 野.人工林生态系统生物多样性与生产力的关系[J].南京林业大学学报(自然科学版),2012,36(04):001.[doi:10.3969/j.jssn.1000-2006.2012.04.001]
 FANG Shengzuo,TIAN Ye.The relationship between biodiversity and productivity in the artificial plantation ecosystem[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(05):001.[doi:10.3969/j.jssn.1000-2006.2012.04.001]
[10]李 平,王国兵,郑阿宝,等.苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J].南京林业大学学报(自然科学版),2012,36(04):079.[doi:10.3969/j.jssn.1000-2006.2012.04.016]
 LI Ping,WANG Guobing,ZHENG Abao,et al.The variations of soil labile organic carbon in four plantations in south of Jiangsu province[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(05):079.[doi:10.3969/j.jssn.1000-2006.2012.04.016]

备注/Memo

备注/Memo:
收稿日期:2019-04-11 修回日期:2020-04-08 基金项目:国家重点研发计划(2017YFD0601103); 黑龙江省省级财政林业科研专项项目(201522)。 第一作者:吴慧(huiwwu@163.com)。*通信作者:王树力(shuliwang@163.com),教授,ORCID(0000-0002-4952-0547)。
更新日期/Last Update: 1900-01-01