[1]梁薇薇,陈立新*,段文标,等.椴树-红松林林隙大小与枯叶分解对土壤香草酸含量的影响[J].南京林业大学学报(自然科学版),2020,44(05):109-116.[doi:10.3969/j.issn.1000-2006.201904022]
 LIANG Weiwei,CHEN Lixin*,DUAN Wenbiao,et al.Effects of gap size and litter decomposition on soil vanillic acid contentin Tilia amurensis-Pinus koraiensis forest[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):109-116.[doi:10.3969/j.issn.1000-2006.201904022]
点击复制

椴树-红松林林隙大小与枯叶分解对土壤香草酸含量的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
109-116
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Effects of gap size and litter decomposition on soil vanillic acid content in Tilia amurensis-Pinus koraiensis forest
文章编号:
1000-2006(2020)05-0109-08
作者:
梁薇薇陈立新*段文标李亦菲李少然于颖颖
(东北林业大学林学院,黑龙江 哈尔滨 150040)
Author(s):
LIANG Weiwei CHEN Lixin* DUAN Wenbiao LI Yifei LI Shaoran YU Yingying
(School of Forestry, Northeast Forestry University, Harbin 150040, China)
关键词:
椴树-红松林 林隙 枯叶分解 土壤香草酸含量 凉水国家级自然保护区
Keywords:
Tilia amurensis-Pinus koraiensis forest forest gap litter decomposition soil vanillic acid Liangshui National Natural Reserve
分类号:
S714.2; S791; S151
DOI:
10.3969/j.issn.1000-2006.201904022
文献标志码:
A
摘要:
【目的】阔叶红松林是中国东北东部山区的地带性森林植被,林隙是广泛存在于天然红松林里的特殊微结构,探究林隙大小、枯叶分解时间和枯叶种类对林地土壤中香草酸含量的影响,为阔叶红松混交林林隙调节和红松人工林可持续经营提供依据。【方法】在黑龙江凉水国家级自然保护区椴树-红松林内,选取由掘根倒木形成的大、中、小林隙,以郁闭林分为对照,分别在林隙中心及对照土壤中埋置3种枯叶(椴树、红松、枫桦)分解袋后,分5次(61、123、147、458、519 d时)取回枯叶分解袋下0~10 cm土层土样,去除杂质并过筛后用于室内分析。采用高效液相色谱法(HPLC)测定土壤中香草酸含量。分析条件为柱温25 ℃,流速0.1 mL/min,自动进样,进样体积10 μL,检测波长280 nm。流动相A为色谱纯甲醇,流动相B为1%磷酸溶液,体积比及梯度洗脱方式为:0 min,VA:VB=30:70; 15 min,VA:VB=50:50; 20 min,VA:VB=55:45; 30 min,VA:VB=60:40。通过方差分析,比较各林隙大小、枯叶分解时间以及枯叶种类对分解后土壤中香草酸含量的影响。【结果】林隙大小、枯叶分解时间及枯叶种类对土壤香草酸含量差异影响显著。林隙大小对土壤香草酸含量的影响不同,椴树枯叶分解后,小林隙、中林隙土壤香草酸含量普遍高于大林隙; 红松枯叶分解后,小林隙土壤香草酸含量基本高于中林隙、大林隙; 枫桦枯叶分解后,中林隙土壤香草酸含量高于大林隙、小林隙。多因素方差分析表明,林隙大小、枯叶种类、枯叶分解时间的交互作用对土壤香草酸含量影响显著。Post Hoc检验结果表明在椴树-红松林小林隙内,枯叶分解519 d时,枯叶种类对土壤内香草酸含量影响不明显,在椴树-红松林大林隙对照中,枯叶分解123 d时,枯叶种类对土壤中香草酸含量的影响弱于其他水平交互作用。【结论】为更好地维护椴树-红松林更新,应考虑林隙大小、枯叶种类及枯叶分解时间对土壤中香草酸含量的影响。枯叶种类在某些分解时间和某些林隙中对土壤中香草酸含量影响不明显。因此,在分析香草酸含量变化时,需要考虑各影响因素各水平的交互作用
Abstract:
【Objective】Broad-leaved Pinus koraiensis forest forms zonal forests in the mountainous areas of the eastern part of Northeast China. Forest gaps are special micro-structures widely existing in natural P. koraiensis forest. This study explored the effects of gap size, litter decomposition duration and litter species on vanillic acid content in the forest soil to provide a theoretical basis for gap regeneration of broad-leaved P. koraiensis mixed forest and sustainable management of P. koraiensis plantations.【Method】Large, medium and small forest gaps formed by uprooted trees were selected in Tilia amurensis-P. koraiensis forest in Liangshui National Natural Reserve. Closed stands were set up as controls. Decomposition bags containing litter from three different tree species(T. amurensis, P. koraiensis and Betula costata)were embedded in the soil at the center of the gaps and in the controls. Samples of the soil below the decomposition bags were collected to a depth of 10 cm at five time intervals(61, 123, 147, 458 and 519 d from the day the bags were embedded). Soil impurities were removed and the samples were sieved for laboratory analysis. The soil vanillic acid content was determined by high performance liquid chromatography using the following analytical conditions: 25 ℃ column temperature, 0.1 mL/min flow rate, 10 mL automatic injection volume, and 280 nm detection wavelength. Mobile phases A and B were pure methanol and 1% phosphoric acid solution, respectively. The gradient elution method was: 0 min, VA:VB=30:70; 15 min, VA:VB=50:50; 20 min, VA:VB=55:45; and 30 min, VA:VB=60:40. The effects of gap size, litter decomposition duration and litter species on soil vanillic acid content were analyzed by using ANOVA. 【Result】Gap size, litter decomposition duration and litter species all had significant effects on the vanillic acid content of the soil. There was an interaction between gap size and litter species as follows: in small and medium gaps, vanillic acid content was generally higher than that in large gaps after decomposition of T. amurensis litter. In small gaps, it was generally higher than that in medium and large gaps after decomposition of P. koraiensis litter, and in medium gaps, it was higher than that in large and small gaps after decomposition of B. costata litter. Multivariate analysis of variance showed that the effects of gap size, litter decomposition duration and litter species had significant effects on vanillic acid content in the soil. A Post Hoc test indicated that in the small gaps of T. amurensis-P. koraiensis forest, after litter decomposition for 519 d, the effect of litter species on the soil vanillic acid content was not significant. In the large closed stand of T. amurensis-P. koraiensis forest, after litter decomposition for 123 d, the effect of litter species on the soil vanillic acid content was weaker than that of the other horizontal interactions.【Conclusion】In order to better analyze the regeneration of T. amurensis-P. koraiensis forest, the effect of gap size, litter decomposition duration and litter species on the content of vanillic acid in the soil should be comprehensively investigated. The effect of litter species on soil vanillic acid content was not significant for certain decomposition durations and gap sizes. Therefore, when analyzing the change in soil vanillic acid content, it is necessary to consider the interactions of various factors and levels

参考文献/References:


[1] YIRDAW E, LUUKKANEN O. Photosynthetically active radiation transmittance of forest plantation canopies in the Ethiopian highlands[J]. Forest Ecology and Management, 2004, 188: 17-24. DOI:10.1016/j.foreco.2003.07.024.
[2] YANG Y G, GENG Y Q, ZHOU H J, et al. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest[J]. Pedobiologia, 2017, 61: 51-60. DOI:10.1016/j.pedobi.2017.03.001.
[3] ZHANG T, YAN Q L, WANG J, et al. Restoring temperate secondary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance[J]. Forest Ecology and Management, 2018, 429: 267-277. DOI:10.1016/j.foreco.2018.07.025.
[4] 魏全帅, 王敬华, 段文标, 等. 红松阔叶混交林不同大小林隙内丘坑复合体微气候动态变化[J]. 应用生态学报, 2014, 25(3): 702-710. WEI Q S, WANG J H, DUAN W B, et al. Microclimate dynamics of pit and mound complex within different sizes of forest gaps in Pinus koraiensis-dominated broadleaved mixed forest[J]. Chin J Appl Ecol, 2014, 25(3): 702-710. DOI:10.13287/j.1001-9332.2013.0020.
[5] UHL C, CLARK K, DEZZEO N, et al. Vegetation dynamics in Amazonian treefall gaps[J]. Ecology, 1988, 69(3): 751-763.DOI:10.2307/1941024.
[6] 宋蕾, 林尤伟, 金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(5):7-12. SONG L, LIN Y W, JIN G Z. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in a mixed broadleaf Korean pine forest[J]. J Nanjing For Uni(Nat Sci Ed), 2017, 41(5):7-12. DOI:10.3969/j.issn.1000-2006.201607039.
[7] 韩玉娜, 张 瑜, 金光泽. 腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2):133-140. HAN Y N, ZHANG Y, JIN G Z. Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest[J]. J Nanjing For Uni(Nat Sci Ed), 2020, 44(2):133-140. DOI:10.3969/j.issn.1000-2006.201812016.
[8] 王琴香,沈海龙,和春庭,等.红松人工林和相邻次生林林下红松天然更新种群格局分析 [J].森林工程,2018,34(2):16-20.WANG Q X,SHEN H L,HE C T,et al.Analysis of natural regeneration pattern of Pinus koraiensis seedlings regenerated in Pinus koraiensis plantation and its adjacent Quercus mongolica natural forest[J].For Eng,2018,34(2):16-20. DOI:10.16270/j.cnki.slgc.2018.02.016.
[9] 梁晓兰, 潘开文, 王进闯. 花椒(Zanthoxylum bungeanum)凋落物分解过程中酚酸的释放及其浸提液对土壤化学性质的影响[J]. 生态学报, 2008, 28(10): 4676-4684. LIANG X L, PAN K W, WANG J C. Releasing dynamics of phenolic acid during Zanthoxylum bungeanum litter decomposition and effects of its aqueous extract on soil chemical properties[J]. Acta Ecol Sini, 2008, 28(10): 4676-4684. DOI:10.3321/j.issn:1000-0933.2008.10.007.
[10] 田给林, 毕艳孟, 孙振钧, 等. 酚酸类物质在作物连作障碍中的化感效应及其调控研究进展[J]. 中国科技论文, 2016, 11(6): 699-705. TIAN G L, BI M Y, SUN Z J, et al. Progress in allelopathic effect and regulation of phenolic acids for continuous cropping obstacle system[J]. China Sci, 2016, 11(6): 699-705. DOI:10.3969/J.ISSN.2095-2783.2016.06.022.
[11] 徐志霞, 张雅倩, 陶月, 等. 不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2):197-205. XU Z X, ZHANG Y Q, TAO Y, et al. Nutrient composition of litters and functional diversity of different microorganisms in various decomposition stages of Casuarina equisetifolia plantations[J]. J Nanjing For Uni(Nat Sci Ed), 2020, 44(2):197-205. DOI:10.3969/j.issn.1000-2006.201901021.
[12] 李子文. 林隙对小兴安岭阔叶红松林凋落物分解及养分释放的影响[D]. 哈尔滨:东北林业大学, 2014. LI Z W. Influence of gap on litter decomposition and nutrient dynamics in typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains[D]. Harbin: Northeast Forestry University, 2014.
[13] 谢星光, 陈晏, 卜元卿, 等. 酚酸类物质的化感作用研究进展[J]. 生态学报, 2014, 34(22): 6417-6428. XIE X G, CHEN Y, BU Y Q, et al. A review of allelopathic researches on phenolic acids[J]. Acta Ecol Sin, 2014, 34(22): 6417-6428. DOI:10.5846/STXB201302210285.
[14] RIDENOUR W M, CALLAWAY R M. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass[J]. Oecologia, 2001, 126(3): 444-450. DOI:10.1007/s004420000533.
[15] 孙小霞, 王海斌, 何海斌, 等. 田间旱育条件下不同化感潜力水稻根际土壤酚酸类和萜类物质分析[J]. 中国生态农业学报, 2014, 22(7): 806-812. SUN X X, WANG H B, HE H B, et al. Analysis of phenolic acids and terpenoids in rhizosphere soils of different allelopathic rice varieties under dry field conditions[J]. Chin J Eco-Agric, 2014, 22(7): 806-812. DOI:10.3724/SP.J.1011.2014.40071.
[16] 黄玉茜, 杨劲峰, 梁春浩, 等. 香草酸对花生种子萌发、幼苗生长及根际微生物区系的影响[J]. 中国农业科学, 2018, 51(9): 1735-1745. HUANG Y Q, YANG J F, LIANG C H, et al. Effects of vanillic acid on seed germination, seedling growth and rhizosphere microflora of peanut[J]. Sci Agric Sin, 2018, 51(9): 1735-1745. DOI:10.3864/j.issn.0578-1752.2018.09.011.
[17] TANG C S, CAI W F, KOHL K, et al. ACS Symposium Series. Plant stress and allelopathy[M]. Washington D C: American Chemical Society, 1994: 142-157. DOI:10.1021/bk-1995-0582.ch011.
[18] EINHELLIG F A. Interactions involving allelopathy in cropping systems[J]. Agronomy Journal, 1996, 88(6): 886-893. DOI:10.2134/agronj1996.00021962003600060007x.
[19] 孔垂华, 胡飞, 骆世明. 胜红蓟(Ageratum conyzoides L.)对作物的化感作用[J]. 中国农业科学, 1997, 30(5): 95. KONG C H, HU F, LUO S M. Alelopathy of Ageratum conyzoides L. on crops[J]. Scientia Agricultura Sinica, 1997, 30(5): 95.
[20] 王大力. 全球CO2浓度变化与植物的化感作用[J].生态学报, 1999, 19(1): 122-127. WANG D L. CO2 enrichment and allelopathy[J]. Acta Ecol Sin, 1999, 19(1): 122-127. DOI:10.3321/j.issn:1000-0933.1999.01.020.
[21] JABRAN K, MAHAJAN G, SARDANA V, et al. Allelopathy for weed control in agricultural systems[J]. Crop Protection, 2015, 72: 57-65. DOI:10.1016/j.cropro.2015.03.004.
[22] MAKINO T, TAKAHASHI Y, SAKURAI Y, et al. Influence of soil chemical properties on adsorption and oxidation of phenolic acids in soil suspension[J]. Soil Science and Plant Nutrition, 1996, 42(4): 867-879. DOI:10.1080/00380768.1996.10416634.
[23] 段文标, 龚建美, 周美珩, 等. 不同林型天然红松混交林林隙大小和枯叶分解对土壤微生物碳的影响[J]. 林业科学研究, 2017, 30(2): 268-275. DUAN W B, GONG J M, ZHOU M H, et al. Effects of gap size and dead leaf decomposition on soil microbial biomass carbon in different stand types of natural Pinus koraiensis mixed forest[J]. For Res, 2017, 30(2): 268-275. DOI:10.13275/j.cnki.lykxyj.2017.02.012.
[24] 刘少冲, 段文标, 钟春艳, 等. 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化[J].水土保持学报, 2012, 26(5): 78-83, 89. LIU S C, DUAN W B, ZHONG C Y, et al. Dynamic changes in soil temperature, water content, nutrition and microorganisms of different size gaps in the mixed broad leaved Korean pine forest[J]. J Soil Water Conserv, 2012, 26(5): 78-83, 89. DOI:10.13870/j.cnki.stbcxb.2012.05.035.
[25] 段罕慧, 张琼, 刘景春, 等. 秋茄凋落叶酚酸动态变化及其对新月菱形藻的化感效应[J]. 厦门大学学报(自然科学版), 2014, 53(6): 860-866. DUAN H H, ZHANG Q, LIU J C, et al. Dynamics of phenolic acids extracted from Kandelia obovata (S.L.)young leaf litters and their allelopathic effects on Nitzschia closterium[J]. Journal of Xiamen University(Natural Science), 2014, 53(6): 860-866. DOI:10.6043/j.issn.0438-0479.2014.06.021.
[26] BLUM U, SHAFER S R, LEHMAN M E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils:concepts vs. an experimental model[J]. Critical Reviews in Plant Science, 1999, 18(5): 673-693. DOI:10.1080/07352689991309441.
[27] AN M, PRATLEY J E, HAIG T. Phytotoxicity of Vulpia residues:Ⅳ. Dynamics of allelochemicals during decomposition of Vulpia residues and their corresponding phytotoxicity[J].Journal of Chemical Ecology, 2000, 26(11): 2603-2617. DOI:10.1023/a:1005545014843.
[28] BERG B, MÜLLER M, WESSÉN B. Decomposition of red clover(Trifolium pratense)roots[J]. Soil Biology Biochem, 1987, 19(5): 589-593. DOI:10.1016/0038-0717(87)90103-9.
[29] 李志华, 沈益新, 刘信宝, 等. 几个紫花苜蓿品种在南京地区的生产性能和品质表现[J]. 中国草地学报, 2006, 28(1): 36-40. LI Z H, SHEN Y X, LIU X B, et al. Performance of forage productivity and quality of several alfalfa varieties in Nanjing[J]. China J Grassland, 2006, 28(1): 36-40. DOI:10.3969/j.issn.1673-5021.2006.01.008.

备注/Memo

备注/Memo:
收稿日期:2019-04-11 修回日期:2020-04-08 基金项目:国家自然科学基金项目(31770656, 31670627)。 第一作者:梁薇薇(L182158798@163.com)。*通信作者:陈立新(lxchen88@163.com),教授,ORCID(0000-0001-9489-580X)。
更新日期/Last Update: 1900-01-01