[1]杨赛兰,耿庆宏,许崇华,等.加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响[J].南京林业大学学报(自然科学版),2020,44(05):117-124.[doi:10.3969/j.issn.1000-2006.201909020]
 YANG Sailan,GENG Qinghong,XU Chonghua,et al.Effects of Solidago canadensis L. invasion on soil respiration in poplar plantations(Populus deltoides)[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):117-124.[doi:10.3969/j.issn.1000-2006.201909020]
点击复制

加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
117-124
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Effects of Solidago canadensis L. invasion on soil respiration in poplar plantations(Populus deltoides)
文章编号:
1000-2006(2020)05-0117-08
作者:
杨赛兰耿庆宏许崇华彭凡茜张梦华徐 侠*
(南京林业大学生物与环境学院,江苏 南京 210037)
Author(s):
YANG Sailan GENG Qinghong XU Chonghua PENG Fanxi ZHANG Menghua XU Xia*
(College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China)
关键词:
加拿大一枝黄花 植物入侵 杨树人工林 土壤呼吸
Keywords:
Solidago canadensis L. plant invasion poplar plantation soil respiration
分类号:
S714
DOI:
10.3969/j.issn.1000-2006.201909020
文献标志码:
A
摘要:
【目的】杨树是我国重要的人工林栽培树种,近年大量的加拿大一枝黄花(Solidago canadensis L.)入侵杨树人工林生态系统,研究加拿大一枝黄花对杨树人工林土壤呼吸的影响,有助于进一步认识陆地人工林生态系统的地下碳(C)循环对植物入侵的响应及其机制。【方法】2018年11月以江苏省东台林场内加拿大一枝黄花入侵和未入侵的8年生相同立地条件下杨树人工林群落为研究对象并建立固定样地,采用长期野外试验监测的研究方法对土壤呼吸以及土壤温度和湿度进行监测,同时钻取土芯测定样地土壤理化性质,对比加拿大一枝黄花入侵与未入侵条件下杨树人工林群落土壤呼吸的变化规律,探讨加拿大一枝黄花入侵杨树人工林后各个非生物因子变化对土壤呼吸的影响。【结果】加拿大一枝黄花的入侵显著增加了杨树人工林的土壤呼吸(P <0.001),且主导这种变化的非生物因子是入侵导致的土壤湿度的变化。加拿大一枝黄花入侵会通过改变土壤理化性质来影响土壤呼吸,显著增加杨树人工林的土壤湿度(P <0.001),同时显著增加土壤总氮含量(P <0.05),降低土壤碳氮比(P <0.05),但对于土壤总碳含量的增加并不显著(P >0.05),对土壤温度和pH的影响也不显著(P >0.05)。【结论】加拿大一枝黄花的入侵增加了杨树人工林土壤系统二氧化碳的排放量,增加了土壤系统的C损失,改变了杨树人工林土壤的C交换过程
Abstract:
【Objective】 Poplar plantations are one of the most important planted forests in China. They play a key role in regional C cycling. However, Solidago canadensis L. has increasingly invaded poplar plantations recently in Jiangsu Province, which may substantially affect the C cycling of these plantations. In this study, we investigated the effects of invasion by S. canadensis on soil respiration in poplar plantations(Populus deltoides ‘I-35')and explored the factors regulating soil respiration across the invaded and non-invaded poplar communities. 【Method】 Our experimental site is located at the Dongtai Forest Farm in Yancheng, Jiangsu Province, eastern China(120°49' E, 32°52' N). The farm has a climate classified as Cfa(Humid subtropical climate). The mean annual temperature is 13.7 ℃ and the mean annual precipitation is 1 051 mm. The soil of the forest farm comprised desalted sandy meadow soil with a pH 8. Our invasion experiment was established in November 2018. We chose 8-year-old pure poplar plantations with uniform site conditions and management measures either with or without S. canadensis invasion as our plots. We used a randomized design with four replicates. Each replicate subplot was 25 m × 30 m with a 50 m buffer zone between any two adjacent subplots. Soil temperature and moisture were measured once a month in March and April 2019. Soil cores, 4 cm in diameter, were collected in March 2019 in each subplot. Soil samples were transferred to our lab, air-dried, ground, and then, total C and N(TC and TN)content was measured by combustion using an elemental analyzer. Soil respiration was measured by using LI-COR 6400. An analysis of variance was applied to examine the effects of invasion on the measured variables and a regression analysis was used to explore the factors regulating soil respiration. 【Result】 The invasion of S. canadensis greatly altered the microclimate and soil properties. We found the invasion significantly increased soil moisture(P <0.001)and TN content(P <0.05). Furthermore, the invasion decreased soil m(C)/m(N)(C/N ratio, P<0.05). Effects of invasion on TC content, soil temperature, and pH were not significant(all P >0.05). Importantly, the invasion of S. canadensis significantly increased soil respiration in poplar plantations(P<0.001). The increases in soil respiration under invasion were associated with changes in microclimate and soil properties as indicated by correlations of soil respiration with microclimate and soil properties. The step-wise regression analysis showed that soil moisture was the dominant factor in regulating variations in soil respiration. 【Conclusion】 In general, the invasion of S. canadensis increases the carbon dioxide emissions of soil systems of poplar plantations leading to increasing loss of C in the soil system. Moreover, the invasion of S. canadensis changes the C exchange process of poplar plantations. Our results contribute to the further understanding of belowground C cycling in response to plant invasions and the associated mechanisms. Furthermore, our results suggest that C cycling models of terrestrial ecosystem should consider the impacts of plant invasion to improve predictions of future climate change

参考文献/References:


[1] HICKMAN J E, ASHTON I W, HOWE K M, et al. The native-invasive balance: implications for nutrient cycling in ecosystems[J]. Oecologia, 2013, 173(1): 319-328. DOI: 10.1007/s00442-013-2607-x.
[2] RICCIARDI A, BLACKBURN T M, CARLTON J T, et al. Invasion science: a horizon scan of emerging challenges and opportunities[J]. Trends in Ecology & Evolution, 2017, 32(6): 464-474. DOI: 10.1016/j.tree.2017.03.007.
[3] EHRENFELD J G. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems, 2003, 6(6): 503-523. DOI: 10.1007/s10021-002-0151-3.
[4] WOLFE B E, KLIRONOMOS J N. Breaking new ground: soil communities and exotic plant invasion[J]. Bioscience, 2005, 55(6): 477-487. DOI: 10.1641/0006-3568(2005)055[0477:Bngsca]2.0.Co; 2.
[5] 王邵军. “植物-土壤”相互反馈的关键生态学问题:格局、过程与机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 1-9. WANG S J. Key ecological issues in plant-soil feedback: pattern, process and mechanism[J]. J Nanjing For Univ(Nat Sci Ed), 2020, 44(2): 1-9. DOI: 10.3969 /j.issn.1000-2006.202001013.
[6] LI W H, ZHANG C B, GAO G J, et al. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity[J]. Plant and Soil, 2007, 296(1): 197-207. DOI: 10.1007/s11104-007-9310-9.
[7] ZOU J, ROGERS W E, DEWALT S J, et al. The effect of Chinese tallow tree(Sapium sebiferum)ecotype on soil-plant system carbon and nitrogen processes[J]. Oecologia, 2006, 150(2): 272-281. DOI: 10.1007/s00442-006-0512-2.
[8] CALLAWAY R M, THELEN G C, RODRIGUEZ A, et al. Soil biota and exotic plant invasion[J]. Nature, 2004, 427(6976): 731-733. DOI: 10.1038/nature02322.
[9] CHENG X L, LUO Y Q, CHEN J Q, et al. Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island[J]. Soil Biology and Biochemistry, 2006, 38(12): 3380-3386. DOI: 10.1016/j.soilbio.2006.05.016.
[10] FAN L, CHEN Y, YUAN J-G, et al. The effect of Lantana camara Linn. invasion on soil chemical and microbiological properties and plant biomass accumulation in southern China[J]. Geoderma, 2010, 154(3): 370-378. DOI: 10.1016/j.geoderma.2009.11.010.
[11] KOURTEV P S, EHRENFELD J G, HäGGBLOM M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83(11): 3152-3166. DOI: 10.1890/0012-9658(2002)083[3152:Epsatm]2.0.Co; 2.
[12] 闫宗平, 仝川. 外来植物入侵对陆地生态系统地下碳循环及碳库的影响[J]. 生态学报, 2008, 28(9): 4440-4450. YAN Z P, TONG C. Impacts of exotic plant invasions on terrestrial ecosystem below-ground carboncycling and carbon pool[J]. Acta Ecologica Sinica, 2008, 28(9): 4440-4450.
[13] KOTEEN L E, BALDOCCHI D D, HARTE J. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands[J]. Environmental Research Letters, 2011, 6(4): 044001. DOI: 10.1088/1748-9326/6/4/044001.
[14] BU N, QU J, LI Z, et al. Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River estuary, China[J]. Plos One, 2015, 10(3): e0121571-e0121571. DOI: 10.1371/journal.pone.0121571.
[15] 布乃顺, 杨骁, 黎光辉, 等. 互花米草入侵对长江口湿地土壤碳动态的影响[J]. 中国环境科学, 2018, 38(7): 2671-2679. BU N S, YANG X, LI G H, et al. Effects of Spartina alterniflora invasion on soil carbon dynamics in wetlands of the Yangtze River estuary[J]. China Environmental Science, 2018, 38(7): 2671-2679. DOI: 10.19674/j.cnki.issn1000-6923.2018.0278.
[16] MARCHANTE E, KJøLLER A, STRUWE S, et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem[J]. Applied Soil Ecology, 2008, 40(2): 210-217. DOI: 10.1016/j.apsoil.2008.04.004.
[17] WEBER E, SUN S G, LI B. Invasive alien plants in China: diversity and ecological insights[J]. Biological Invasions, 2008, 10(8): 1411-1429. DOI: 10.1007/s10530-008-9216-3.
[18] LIAO M, XIE X M, PENG Y, et al. Changes of soil microbiolo-gical characteristics after Solidago canadensis L. invasion[J]. Agricultural Sciences in China, 2011, 10(7): 1064-1071. DOI: 10.1016/S1671-2927(11)60095-3.
[19] 许京璇,薛丽芳,强胜.原产地和入侵地不同细胞型加拿大一枝黄花幼苗期形态特征的比较[J].植物资源与环境学报,2018,27(1):44-51.XU J X,XUE L F,QIANG S. Comparison on morphological characteristics of different cellular types of Solidago canadensis from native and introduced ranges at seedling stage[J]. J Plant Resour Environ, 2018,27(1):44-51. DOI: 10.3969/j.issn.1674-7895.2018.01.06.
[20] ZHANG C B, WANG J, QIAN B Y, et al. Effects of the invader Solidago canadensis on soil properties[J]. Applied Soil Ecology, 2009, 43(2): 163-169. DOI: 10.1016/j.apsoil.2009.07.001.
[21] ZHANG L, MA X, WANG H, et al. Soil respiration and litter decomposition increased following perennial forb invasion into an annual grassland[J]. Pedosphere, 2016, 26(4): 567-576. DOI: 10.1016/S1002-0160(15)60066-2.
[22] MCCULLEY R L, BOUTTON T W, ARCHER S R. Soil respiration in a subtropical Savanna parkland: response to water additions[J]. Soil Science Society of America Journal, 2007, 71(3): 820-828. DOI: 10.2136/sssaj2006.0303.
[23] METCALFE D B, FISHER R A, WARDLE D A. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change[J]. Biogeosciences, 2011, 8(8): 2047-2061. DOI: 10.5194/bg-8-2047-2011.
[24] RYAN M G, LAW B E. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73(1): 3-27. DOI: 10.1007/s10533-004-5167-7.
[25] 普慧梅, 王艮梅. 不同经营模式下杨树人工林土壤溶解性有机碳的吸附行为[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 55-63. PU H M, WANG G M. Mechanism of dissolved organic carbon adsorption in soils under different poplar plantation management patterns[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(2): 55-63. DOI: 10. 3969 /j. issn. 1000-2006. 201803028.
[26] EHRENFELD J G, KOURTEV P, HUANG W. Changes in soil functions following invasions of exotic understory plants in deciduous forests[J]. Ecological Applications, 2001, 11(5): 1287-1300. DOI: 10.1890/1051-0761(2001)011[1287:Cisffi]2.0.Co; 2.
[27] LIAO C, LUO Y, JIANG L, et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China[J]. Ecosystems, 2007, 10(8): 1351-1361. DOI: 10.1007/s10021-007-9103-2.
[28] LITTON C M, SANDQUIST D R, CORDELL S. A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forest[J]. Global Change Biology, 2008, 14(4): 726-739. DOI: 10.1111/j.1365-2486.2008.01546.x.
[29] GARTEN C T, CLASSEN A T, NORBY R J. Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment[J]. Plant and Soil, 2009, 319(1): 85-94. DOI: 10.1007/s11104-008-9851-6.
[30] SCOTT-DENTON L E, ROSENSTIEL T N, MONSON R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12(2): 205-216. DOI: 10.1111/j.1365-2486.2005.01064.x.
[31] BARANOVá B, MANKO P, JáSZAY T. Differences in surface-dwelling beetles of grasslands invaded and non-invaded by goldenrods(Solidago canadensis, S. gigantea)with special reference to Carabidae[J]. Journal of Insect Conservation, 2014, 18(4): 623-635. DOI: 10.1007/s10841-014-9666-0.
[32] FACELLI J M, PICKETT S T A. Plant litter: Its dynamics and effects on plant community structure[J]. The Botanical Review, 1991, 57(1): 1-32. DOI: 10.1007/BF02858763.
[33] ZHANG L, ZHANG Y, ZOU J, et al. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect[J]. Scientific Reports, 2014, 4:5488. DOI: 10.1038/srep05488.
[34] ASHTON I W, HYATT L A, HOWE K M, et al. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest[J]. Ecological Applications, 2005, 15(4): 1263-1272. DOI: 10.1890/04-0741.
[35] 梁雷, 叶小齐, 吴明, 等. 加拿大一枝黄花入侵对杭州湾湿地围垦区土壤养分及活性有机碳组分的影响[J]. 土壤, 2016, 48(4): 680-685. LIANG L, YE X Q, WU M, et al. Invasion effects of Solidago canadensis on soil nutrients and active organic carbon components in reclamation district of Hangzhou Bay wetland[J]. Soil, 2016, 48(4): 680-685. DOI: 10.13758/j.cnki.tr.2016.04.009.
[36] 陆建忠, 裘伟, 陈家宽, 等. 入侵种加拿大一枝黄花对土壤特性的影响[J]. 生物多样性, 2005, 13(4): 347-356. LU J Z, QIU W, CHEN J K, et al. Impact of invasive species on soil properties: Canadian goldenrod(Solidago canadensis)as a case study[J]. Biodiversity Science, 2005, 13(4): 347-356. DOI: 10.3321/j.issn:1005-0094.2005.04.008.
[37] VANDERHOEVEN S, DASSONVILLE N, CHAPUIS-LARDY L, et al. Impact of the invasive alien plant Solidago giganteaon primary productivity, plant nutrient content and soil mineral nutrient concentrations[J]. Plant and Soil, 2006, 286(1): 259-268. DOI: 10.1007/s11104-006-9042-2.
[38] KLIRONOMOS J N. Feedback with soil biota contributes to plant rarity and invasiveness in communities[J]. Nature, 2002, 417(6884): 67-70. DOI: 10.1038/417067a.
[39]LIAO C, PENG R, LUO Y, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J]. New Phytologist, 2008, 177(3): 706-714. DOI: 10.1111/j.1469-8137.2007.02290.x.

备注/Memo

备注/Memo:
收稿日期:2019-09-10 修回日期:2020-06-26 基金项目:江苏省高等学校自然科学研究重大项目(17KJA180006); 江苏省六大人才高峰计划(JY-041 & TD-XYDXX-006); 南京林业大学“5151”人才计划; 江苏高校优势学科建设工程资助项目(PAPD)。 第一作者:杨赛兰(yangsailan1997@163.com),ORCID(0000-0003-2366-9287)。*通信作者:徐侠(xuxia.1982@yahoo.com),教授,ORCID(0000-0002-7806-291X)。
更新日期/Last Update: 1900-01-01