[1]周司涵,张 韫*,崔晓阳.兴安落叶松林火烧迹地土壤速效钾时空动态分析[J].南京林业大学学报(自然科学版),2020,44(05):141-144.[doi:10.3969/j.issn.1000-2006.201906009]
 ZHOU Sihan,ZHANG Yun*,CUI Xiaoyang.Temporal and spatial dynamics of soil available potassium in a post-fire Larix gmelinii forest[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):141-144.[doi:10.3969/j.issn.1000-2006.201906009]
点击复制

兴安落叶松林火烧迹地土壤速效钾时空动态分析
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
141-144
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Temporal and spatial dynamics of soil available potassium in a post-fire Larix gmelinii forest
文章编号:
1000-2006(2020)05-0141-07
作者:
周司涵张 韫*崔晓阳
(东北林业大学林学院,森林生态系统可持续经营教育部重点实验室,黑龙江 哈尔滨 150040)
Author(s):
ZHOU Sihan ZHANG Yun* CUI Xiaoyang
(Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China)
关键词:
兴安落叶松林 林火试验 火烧迹地 土壤速效钾 时空变化
Keywords:
Larix gmelinii forest forest fire experiment burned area soil available potassium temporal and spatial dynamics
分类号:
S714.5
DOI:
10.3969/j.issn.1000-2006.201906009
文献标志码:
A
摘要:
【目的】研究不同强度火干扰下兴安落叶松林土壤速效钾含量的时空变化,探讨其变化规律与空间格局的形成原因,分析火烧迹地恢复初期土壤速效钾营养水平,为林地土壤钾营养调控与管理提供参考。【方法】在大兴安岭北部兴安落叶松林地布设固定采样点,进行林火点烧试验,分别于火烧前、火烧后、融雪季后和生长季采用土钻法在固定点位30 cm半径内采集土壤样品,采用乙酸铵法测定土壤速效钾含量,分析轻、中、重度火烧区土壤速效钾时空变化特征。【结果】①轻度火烧区,土壤速效钾含量未因火烧立即发生明显变化,但在融雪季显著上升,生长季仍维持较高水平; 中、重度火烧区,则在火烧后立即升高,融雪季进一步上升,而后相对稳定; ②火烧强度空间格局与土壤速效钾含量空间格局在融雪季和生长季均极显著正相关,与土壤速效钾含量变化率在火烧后的各时期均极显著正相关; 原生土壤速效钾含量与火烧后各时期土壤速效钾含量及其变化率均显著相关; 火烧后,土壤速效钾空间格局是原生土壤速效钾含量空间格局与火烧强度空间格局综合作用的结果。【结论】经过融雪季与生长季,兴安落叶松林轻、中、重度火烧区土壤速效钾含量显著升高,有利于火烧迹地恢复初期森林植被更新与改造
Abstract:
【Objective】 Both the temporal variation and spatial distribution of soil available potassium content were investigated in post-fire areas in a Larix gmelinii forest that experienced different intensity burns. The variation regularity and spatial pattern were also considered to better understand the characteristics of soil available potassium during the early restoration of burned plots and to provide insights into forest ecosystem restoration after fire disturbance.【Method】 In an L. gmelinii forest in the northern Great Xing'an Mountain region, fixed sampling points were established prior to conducting a fire experiment with three burn intensities(mild, moderate and severe). Using a soil core method, soil samples were collected within a 30 cm radius of each fixed sampling point before and after the burn, following the snowmelt season, and during the growing season. The soil available potassium content was determined using the ammo-nium acetate method. Temporal and spatial dynamics of soil available potassium in the post-fire areas were analyzed and compared.【Result】① In the mildly burned area, soil available potassium content was the same pre- and post-fire, but increased significantly following the snowmelt season, and remained at a high level during the growing season. In the moderately and severely burned areas, there was a post-fire increase in soil available potassium content which increased further following the snowmelt season, and remained unchanged during the growing season. ② The spatial pattern of burn intensity was positively correlated with the spatial pattern of soil available potassium content following the snowmelt season and during the growing season. The change rate of available potassium content after the fire was significantly positively correlated with burn intensity across all sampling times. The available potassium content or its change rate following the fire was significantly correlated with native soil available potassium content across all sampling times. The post-fire spatial pattern of soil available potassium was related to both the native soil available potassium content and burn intensity.【Conclusion】Following the snowmelt season, and during the growing season, soil available potassium content significantly increased in mildly, moderately and severely burned areas in an L. gmelinii forest. This may be beneficial for regeneration and reforestation during the initial post-fire recovery stage

参考文献/References:


[1] BRAIS S, DAVID P, OUIMET R. Impact of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands[J]. Forest Ecology and Management, 2000, 137(1/2/3):231-243. DOI: 10.1016/S0378-1127(99)00331-X.
[2] 宋雨, 胡海清, 孙龙, 等. 大兴安岭不同坡位地表可燃物含水率的动态变化与建模[J]. 森林工程, 2017, 33(5): 1-7. SONG Y, HU H Q, SUN L, et al. Dynamic change and modeling of moisture content of surface fuel in different slope positions of Daxing'anling [J]. For Eng, 2017, 33(5):1-7. DOI:10.16270/j.cnki.slgc.2017.05.001.
[3] WALLENIUS T H, KUULUVAINEN T, VANHA-MAJAMAA I. Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia[J]. Canadian Journal of Forest Research, 2004, 34(7):1400-1409. DOI: 10.1139/x04-023.
[4] 萨如拉, 周庆, 刘鑫晔, 等. 1980—2015年内蒙古森林火灾的时空动态[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 137-143. SA R L, ZHOU Q, LIU X Y, et al. Studies on the spatial and temporal dynamics of forest fires in Inner Mongolia from 1980 to 2015[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(2): 137-143. DOI: 10.3969 /j.issn.1000-2006.201806037.
[5] 朱教君, 刘足根. 森林干扰生态研究[J]. 应用生态学报, 2004, 15(10):1703-1710. ZHU J J, LIU Z G. A review on disturbance ecology of forest[J]. Chin J Appl Ecol, 2004, 15(10):1703-1710. DOI: 10.13287/j.1001-9332.2004.0356.
[6] VAN STRAATEN O, DOAMBA S W M F, CORRE M D, et al. Impacts of burning on soil trace gas fluxes in two wooded savanna sites in Burkina Faso[J]. Journal of Arid Environments, 2019, 165:132-140. DOI: 10.1016/j.jaridenv.2019.02.013.
[7] AKBURAK S, SON Y, MAKINECI E, et al. Impacts of low-intensity prescribed fire on microbial and chemical soil properties in a Quercus frainetto forest[J]. Journal of Forest Research, 2018, 29(3):687-696. DOI: 10.1007/s11676-017-0486-4.
[8] 许鹏波, 屈明, 薛立. 火对森林土壤的影响[J]. 生态学杂志,2013,32(6):1596-1606. XU P B, QU M, XUE L. Effects of forest fire on forest soils[J]. Chin J Ecol, 2013, 32(6):1596-1606. DOI:10.13292/j.1000-4890.2013.0256.
[9] ALCAÑIZ M, OUTEIRO L, FRANCOS M, et al. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest(Montgrí Massif, Catalonia, Spain)[J]. Science of the Toatal Environment, 2016, 572:1329-1335. DOI: 10.1016/j.scitotenv.2016. 01.115.
[10] OLIVEIRA-FILHO E C, BRITO D Q, DIAS Z M B, et al. Effects of ashes from a Brazilian savanna wildfire on water, soil and biota: an ecotoxicological approach[J]. Science of the Total Environment, 2018, 618:101-111. DOI: 10.1016/j.scitotenv.2017.11.051.
[11] 孙明学. 塔河林区林火对土壤性质与植被恢复的影响[D]. 北京: 北京林业大学, 2011:8-13. SUN M X. The impacts on soil properties and revegetation from forest fire in Tahe forest region[D]. Beijing: Beijing Forestry University, 2011:8-13.
[12] WANG C T, WANG G X, WANG Y, et al. Fire alters vegetation and soil microbial community in alpine meadow[J]. Land Degradation & Development, 2016, 27:1379-1390.DOI: 10.1002/ldr. 2367.
[13] PEREIRA P, CERDÀ A, BEDA X, et al. Spatial models for monitoring the spatio-temporal evolution of ashes after fire: a case study of a burnt grassland in Lithuania[J]. Solid Earth, 2013, 4:153-165. DOI: 10.5194/se-4-153-2013.
[14] BODÍ M B, MARTIN D A, BALFOUR V N, et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects[J]. Earth-Science Reviews, 2014, 130:103-127. DOI: 10.1016/j.earscirev.2013.12.007.
[15] 李飞, 胡同欣, 赵彬清,等.大兴安岭火烧迹地枯落物分解动态变化研究[J]. 森林工程, 2018, 34(5):31-38. LI F, HU T X, ZHAO B Q, et al. Study on the dynamic changes of litter decomposition in burned areas in Great Xing'an Mountains[J].For Eng, 2018, 34(5):31-38. DOI:10.16270/j.cnki.slgc.2018.05.006.
[16] CASTELLI L M, LAZZARI M A. Impact of fire on soil nutrients in central semiarid Argentina[J]. Arid Land Research and Management, 2002, 16(4):349-364. DOI:10.1080/ 15324980290000467.
[17] 孙向阳. 土壤学[M]. 北京:中国林业出版社, 2005:275-277. SUN X Y. Soil Science [M]. Beijing: China Forestry Publishing House, 2005:275-277.
[18] 孙龙, 赵俊, 胡海清. 中度火干扰对白桦落叶松混交林土壤理化性质的影响[J]. 林业科学, 2011, 47(2): 103-110. SUN L, ZHAO J, HU H Q. Effect of moderate fire disturbance on soil physical and chemical properties of Betula platyphylla-Larix gmelinii mixed forest[J]. Scientia Silvae Sinicae, 2011, 47(2): 103-110.
[19] 李炳怡, 刘冠宏, 李伟克, 等.不同火强度对河北平泉油松林土壤有机碳及土壤养分影响[J]. 生态科学, 2018, 37(4):35-44. LI B Y, LIU G H, LI W K, et al. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County, Hebei Province[J]. Ecol Sci, 2018, 37(4):35-44. DOI:10.14108/j.cnki.1008-8873.2018.04.004.
[20] 孙毓鑫, 吴建平, 周丽霞, 等. 广东鹤山火烧迹地植被恢复后土壤养分含量变化[J]. 应用生态学报, 2009, 20(3): 513-517. SUN Y X, WU J P, ZHOU L X, et al. Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province[J]. Chin J Appl Ecol, 2009, 20(3): 513-517. DOI:10.13287/j.1001-9332.2009.0104.
[21] FRANCOS M, BEDA X, PEREIRA P, et al. Long-term impact of wildfire on soils exposed to different fire severities: a case study in Cadiretes Massif(NE Iberian Peninsula)[J]. Sci Total Environ, 2018, 615:664-671. DOI: 10.1016/j.scitotenv.2017.09.311.
[22] 刘柯珍, 赵凤君, 王明玉, 等. 我国大兴安岭地区夏季林火的火环境研究[J]. 林业机械与木工设备, 2018, 46(7):24-29, 33. LIU K Z, ZHAO F J, WANG M Y, et al. Research on fire environment of summer forest fires in Daxing'anling region in China [J]. For Mach Woodwork Equip, 2018, 46(7):24-29, 33. DOI:10.13279/j.cnki.fmwe.2018.0075.
[23] 崔晓阳, 郝敬梅, 赵山山, 等.大兴安岭北部试验林火影响下土壤有机碳含量的时空变化[J]. 水土保持学报, 2012, 26(5):195-200. CUI X Y, HAO J M, ZHAO S S, et al. Temporal and spatial changes of total soil organic carbon content as affected by an experimental forest fire in Greater Xing'an Mountains[J]. J Soil Water Conserv, 2012, 26(5): 195-200. DOI:10.13870/j.cnki.stbcxb.2012.05.024.
[24] CUI X Y, GAO F, SONG J F, et al. Changes in soil total organic carbon after an experimental fire in a cold temperate coniferous forest: a sequenced monitoring approach[J]. Geoderma, 2014, 226/227:260-269. DOI: 10.1016/j.geoderma.2014.02.010.
[25] 张韫, 于悦, 崔晓阳. 试验林火干扰下兴安落叶松林土壤有效磷的时空变化[J]. 北京林业大学学报, 2019, 41(2):12-18. ZHANG Y, YU Y, CUI X Y. Temporal and spatial change patterns on soil available phosphorus under an experimental forest fire in Larix gmelinii forests[J]. J Beijing For Univ, 2019, 41(2):12-18. DOI: 10.13332 /j.1000-1522.20180129.
[26] 张韫. 土壤·植物·水理化分析教程[M]. 北京:中国林业出版社, 2011:85-87. ZHANG Y. Soil, plants, water physical and chemical analysis tutorial[M]. Beijing: China Forestry Publishing House, 2011: 85-87.
[27] 孔健健, 杨健. 火干扰对北方针叶林土壤环境的影响[J]. 土壤通报, 2014, 45(2):291-296. KONG J J, YANG J. A review of effects of fire disturbance on soil environment in boreal conife-rous forests[J]. Chin J Soil Sci, 2014, 45(2):291-296. DOI:10.19336/j.cnki.trtb.2014.02.006.
[28] CERTINI G. Effects of fire on properties of forest soils: a review[J]. Oecologia,2005,143(1): 1-10. DOI: 10.1007/s00442-004-1788-8.
[29] 魏丽红. 冻融交替对黑土土壤有机质及氮钾养分的影响[D]. 长春:吉林农业大学, 2004:37-47. WEI L H. The effect of alternative freezing and thawing on soil organic matter and nitrogen potassium nutrition of black soil[D]. Changchun: Jilin Agricultural University,2004:37-47.
[30] 刘煜, 胡小飞, 陈伏生, 等. 马尾松和苦槠林根际土壤矿化和根系分解CO2释放的温度敏感性[J]. 应用生态学报, 2013, 24(6):1501-1508. LIU Y, HU X F, CHEN F S, et al. Temperature sensitivity of CO2 fluxes from rhizosphere soil mineralization and root decomposition in Pinus massoniana and Castanopsis sclerophylla forests[J]. Chin J Appl Ecol, 2013, 24(6):1501-1508. DOI:10.13287/j.1001-9332.2013.0325.
[31] 刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2):29-40. LIU G H, LI B Y, GONG D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. J Beijing For Univ, 2019, 41(2):29-40. DOI: 10.13332 /j.1000-1522.20180339.
[32] 张韫, 李传波, 崔晓阳. 大兴安岭北部试验林火干扰下土壤密度的时空变化[J]. 北京林业大学学报, 2018, 40(6): 48-54. ZHANG Y, LI C B, CUI X Y. Temporal and spatial variations of soil bulk density by experimental forest fire in Daxing'an Mountains of northeastern China[J]. J Beijing For Univ, 2018, 40(6):48-54. DOI: 10.13332 /j.1000-1522.20170318.

备注/Memo

备注/Memo:
收稿日期:2019-06-06 修回日期: 2020-04-29 基金项目:国家自然科学基金项目(31570597); 国家重点研发计划(2016YFA0600803); 中央高校基本科研业务费专项项目(2572017PZ05)。 第一作者:周司涵(xinlang2007@126.com)。*通信作者:张韫(rowena_zy@163.com),副教授,ORCID(0000-0002-6250-6600)。
更新日期/Last Update: 1900-01-01