[1]王新新,韩建刚*,徐传红,等.碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响[J].南京林业大学学报(自然科学版),2020,44(05):174-180.[doi:10.3969/j.issn.1000-2006.201904052.]
 WANG Xinxin,HAN Jiangang,*,et al.Effects of C/NO-3-N change on denitrification and dissimilatory nitratereduction to ammonium in the Chongming Dongtan wetland[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):174-180.[doi:10.3969/j.issn.1000-2006.201904052.]
点击复制

碳氮比改变对崇明东滩湿地反硝化与硝态氮氨化的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
174-180
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Effects of C/NO-3-N change on denitrification and dissimilatory nitrate reduction to ammonium in the Chongming Dongtan wetland
文章编号:
1000-2006(2020)05-0174-07
作者:
王新新1韩建刚12*徐传红1徐 莎1
(1.南京林业大学生物与环境学院,江苏 南京 210037; 2. 南京林业大学, 南方现代林业协同创新中心,江苏 南京 210037)
Author(s):
WANG Xinxin1 HAN Jiangang1 2* XU Chuanhong1 XU Sha1
(1.College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China)
关键词:
湿地 土壤碳氮比 反硝化 硝态氮氨化 15N同位素 N2O排放 崇明岛
Keywords:
wetland the ratio of carborn to nitrogen denitrification(Den) dissimilatory nitrate reduction to ammonium(DNRA) 15N N2O emission Chongming Island
分类号:
S156.8
DOI:
10.3969/j.issn.1000-2006.201904052.
文献标志码:
A
摘要:
【目的】分析自然和人为活动加速影响下沿海湿地土壤碳氮比变化对硝态氮还原过程的影响。【方法】以崇明东滩典型滨海湿地为例,采集4种不同覆被类型下沉积物样品,添加C6H12O6或KNO3溶液,使沉积物有机碳与硝态氮比例(C/NO-3-N)增大30%和减小30%,借助15N同位素稀释技术,研究反硝化(Den)与硝态氮氨化(DNRA)的变化特征。【结果】C/NO-3-N的升高或降低均引起芦苇和互花米草覆被下沉积物Den和DNRA速率的显著下降(P<0.05)。芦苇覆被下Den速率从原土的10.1 μg/(kg·h)降至1.0~3.1 μg /(kg·h),互花米草覆被下Den速率从原土的3.4 μg /(kg·h)降至0.3~0.4 μg /(kg·h)。相比较而言,芦苇植被下DNRA速率从原土的21.9 μg /(kg·h)降至12.7~14.5 μg /(kg·h),互花米草覆被下从原土的42.6 μg /(kg·h)降至3.1~5.8 μg /(kg·h)。【结论】4种覆被下沉积物DNRA/Den值均大于1,表明DNRA是湿地硝态氮还原的主要途径。与C/NO-3-N减小相比,C/NO-3-N增大使NO-3-N的还原更趋向DNRA过程。崇明东滩湿地C/NO-3-N的波动(±30%)可能并不会导致沉积物N2O排放的显著增加
Abstract:
【Objective】 Fluctuations in the ratio of carbon and nitrogen in the wetland soil have an important impact on the nitrate nitrogen reductions under the influence of accelerated natural and human activities. 【Method】 Sediment samples were collected under four vegetation types in the Chongming Dongtan wetland. The ratio of organic carbon to nitrate(C/NO-3-N)in sediments was adjusted to increase or decrease by 30% by adding C6H12O6 or KNO3 solution, respectively. The 15N isotope dilution technique was used to define the changes in denitrification(Den)and dissimilatory nitrate reduction to ammonium(DNRA). 【Result】 The results showed that the increase or decrease in C/NO-3-N caused a significant decrease in the rates of Den and DNRA in the sediments under Phragmites australis and Spartina alterniflora(P < 0.05). The Den rate under P. australis decreased from 10.1 μg/(kg·h)(CK)to 1.0-3.1 μg/(kg·h), whereas under S. alterniflora, it decreased from 3.4 μg/(kg·h)(CK)to 0.3-0.4 μg/(kg·h). In contrast, the DNRA rate decreased from 21.9 μg/(kg·h)(CK)to 12.7-14.5 μg/(kg·h)under P. australis, and for S. alterniflora, it decreased from 42.6 μg/(kg·h)(CK)to 3.1-5.8 μg/(kg·h). This indicates that the impact of changes in C/NO-3-N on nitrate

参考文献/References:


[1] 殷士学.淹水土壤中硝态氮异化还原成铵过程的研究[D].南京:南京农业大学,2000.YIN S X.Dissimilatory nitrate reduction to ammonium in submerged soils[D].Nanjing:Nanjing Agricultural University,2000.
[2] 徐继荣,王友绍,殷建平,等.珠江口入海河段DIN形态转化与硝化和反硝化作用[J].环境科学学报,2005,25(5):686-692.XU J R,WANG Y S,YIN J P,et al.Transformation of dissolved inorganic nitrogen species and nitrigication and denitrification processes in the near sea section of Zhujiang River[J].Acta Sci Circumstantiae,2005,25(5):686-692. DOI:10.13671/j.hjkxxb.2005.05.021.
[3] 王万忠,饶磊,王沛芳,等.河流护岸多孔生态材料对水体中硝态氮去除试验[J].水资源保护,2018,34(1):58-63. WANG W Z,RAO L,WANG P F,et al.Experiment of porous ecological material of river revetment on removal of nitrate nitrogen in water[J].Water Resources Protection,2018,34(1):58-63.
[4] 杨柳燕,王楚楚,孙旭,等.淡水湖泊微生物硝化反硝化过程与影响因素研究[J].水资源保护,2016,32(1):12-22. YANG L Y,WANG C C,SUN X,et al.Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes[J].Water Resources Protection,2016,32(1):12-22.
[5] 蔡延江,丁维新,项剑.土壤N2O和NO产生机制研究进展[J].土壤,2012,44(5):712-718.CAI Y J,DING W X,XIANG J.Mechanisms of nitrous oxide and nitric oxide production in soils:a review[J].Soils,2012,44(5):712-718. DOI:10.13758/j.cnki.tr.2012.05.001.
[6] 邓焕广,张智博,张菊,等.东鱼河春季沉积物反硝化脱氮作用与N2O排放研究[J].水土保持学报,2019,33(1):283-287.DENG H G,ZHANG Z B,ZHANG J,et al.Denitrification and N2O emission in sediments of Dongyu River in spring[J].J Soil Water Conserv,2019,33(1):283-287. DOI:10.13870/j.cnki.stbcxb.2019.01.044.
[7] 韦宗敏.微好氧环境中硝酸盐异化还原成铵的影响研究[D].广州:华南理工大学,2012.WEI Z M.Preliminary research on dissimilatory nitrate reduction to ammonium in microaerobic condition[D].Guangzhou:South China University of Technology,2012.
[8] ZHANG W J,ZHANG Y,SU W T,et al.Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems[J].J Environ Sci,2014,26(4):885-891. DOI:10.1016/S1001-0742(13)60460-X.
[9] ZHANG J B,LAN T,MÜLLER C,et al.Dissimilatory nitrate reduction to ammonium(DNRA)plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J].J Soils Sediments,2015,15(3):523-531. DOI:10.1007/s11368-014-1037-7.
[10] KUYPERS M M M,MARCHANT H K,KARTAL B.The microbial nitrogen-cycling network[J].Nat Rev Microbiol,2018,16(5):263-276. DOI:10.1038/nrmicro.2018.9.
[11] MA H B,AELION C M.Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary[J].Soil Biol Biochem,2005,37(10):1869-1878.DOI:10.1016/j.soilbio.2005.02.020.
[12] HERBERT R A.Nitrogen cycling in coastal marine ecosystems[J].FEMS Microbiol Rev,1999,23(5):563-590.DOI:10.1016/S0168-6445(99)00022-4.
[13] 陈怀璞,张天雨,葛振鸣,等.崇明东滩盐沼湿地土壤碳氮储量分布特征[J].生态与农村环境学报,2017,33(3):242-251.CHEN H P,ZHANG T Y,GE Z M,et al.Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming[J].J Ecol Rural Environ,2017,33(3):242-251. DOI:10.11934/j.issn.1673-4831.2017.03.007.
[14] 宋大平,左强,刘本生,等.农业面源污染中氮排放时空变化及其健康风险评价研究:以淮河流域为例[J].农业环境科学学报,2018,37(6):1219-1231.SONG D P,ZUO Q,LIU B S,et al.Estimation of spatio-temporal variability and health risks of nitrogen emissions from agricultural non-point source pollution:a case study of the Huaihe River basin,China[J].J Agro-Environ Sci,2018,37(6):1219-1231.DOI:10.11654/jaes.2017-1374.
[15] 万晓红,王雨春,陆瑾,等.白洋淀湿地氮素转化和N2O排放特征研究[J].水利学报,2009,40(10):1168-1174.WAN X H,WANG Y C,LU J,et al.Study on nitrogen transformation and N2O emission flux in Baiyangdian wetland[J].J Hydraul Eng,2009,40(10):1168-1174. DOI:10.13243/j.cnki.slxb.2009.10.001.
[16] 胡泓.长江口芦苇湿地温室气体排放通量及影响因素研究[D].上海:华东师范大学,2014.HU H.Greenhouse gases fluxes at Yangtze estuary Phragmites australis wetland and the influencing factors[D].Shanghai:East China Normal University,2014.
[17] LAVERMAN A M,CANAVAN R W,SLOMP C P,et al.Potential nitrate removal in a coastal freshwater sediment(Haringvliet Lake,the Netherlands)and response to salinization[J].Water Res,2007,41(14):3061-3068. DOI:10.1016/j.watres.2007.04.002.
[18] YIN S X,CHEN D,CHEN L M,et al.Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J].Soil Biol Biochem,2002,34(8):1131-1137. DOI:10.1016/S0038-0717(02)00049-4.
[19] 葛潇霄,田昆,郭雪莲,等.氮输入对纳帕海沼泽湿地土壤氨挥发和反硝化的影响[J].生态环境学报,2011,20(12):1846-1852.GE X X,TIAN K,GUO X L,et al.Effects of nitrogen input on marsh wetland soil ammonia volatilization and denitrification in Napahai[J].Ecol Environ Sci,2011,20(12):1846-1852. DOI:10.16258/j.cnki.1674-5906.2011.12.026.
[20] SCHMIDT C S,RICHARDSON D J,BAGGS E M.Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J].Soil Biol Biochem,2011,43(7):1607-1611. DOI:10.1016/j.soilbio.2011.02.015.
[21] FAZZOLARI É,NICOLARDOT B,GERMON J C.Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores[J].Eur J Soil Biol,1998,34(1):47-52. DOI:10.1016/S1164-5563(99)80006-5.
[22] 崔洪磊,徐莎,印杰,等.植被收割对滨海湿地沉积物中CO2和N2O释放的影响[J].环境科学研究,2015,28(8):1200-1208.CUI H L,XU S,YIN J,et al.Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J].Res Environ Sci,2015,28(8):1200-1208. DOI:10.13198/j.issn.1001-6929.2015.08.04.
[23] 徐莎,陈圆,印杰,等.典型滨海湿地沉积物反硝化与硝态氮氨化相对重要性研究[J].南京林业大学学报(自然科学版),2016,40(2):9-15.XU S,CHEN Y,YIN J,et al.The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland[J].J Nanjing For Univ(Nat Sci Ed),2016,40(2):9-15. DOI:10.3969/j.issn.1000-2006.2016.02.002.
[24] 印杰,汤逸帆,崔洪磊,等.崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究[J].南京林业大学学报(自然科学版),2016,40(4):29-34.YIN J,TANG Y F,CUI H L,et al.Emissions of CO2 and N2O in sediments with different vegetation types in Chongming Dongtan wetland[J].J Nanjing For Univ(Nat Sci Ed),2016,40(4):29-34 DOI: 10.3969 /j.issn.1000-2006.2016.04.005.
[25] LIUX,HAN J G,MA Z W,et al.Effect of carbon source on dissimilatory nitrate reduction to ammonium in costal wetland sediments[J].J Soil Sci Plant Nutr,2016(2):337-349.DOI:10.4067/s0718-95162016005000029.
[26] 唐洪根,周廷璋,辛沛.淤积刺激下滨海湿地植物根系吸水及土壤水分变化[J/OL].水资源保护,2020:1-11.[2020-06-28].http://kns.cnki.net/kcms/detail/32.1356.tv.20200210.1717.011.html.
[27] 孙建飞,白娥,戴崴巍,等.15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J].生态学杂志,2014,33(9):2574-2580.SUN J F,BAI B,DAI W W,et al.Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil[J].Chin J Ecol,2014,33(9):2574-2580.DOI:10.13292/j.1000-4890.2014.0176.
[28] 贾俊仙,李忠佩,车玉萍.添加葡萄糖对不同肥力红壤性水稻土氮素转化的影响[J].中国农业科学,2010,43(8):1617-1624.JIA J X,LI Z P,CHE Y P.Effects of glucose addition on N transformations in paddy soils with a gradient of organic C content in subtropical China[J].Sci Agric Sin,2010,43(8):1617-1624.DOI: 10.3864/j.issn.0578-1752.2010.08.010.
[29] LU W W,ZHANG H L,SHI W M.Dissimilatory nitrate reduction to ammonium in an anaerobic agricultural soil as affected by glucose and free sulfide[J].Eur J Soil Biol,2013,58:98-104. DOI:10.1016/j.ejsobi.2013.07.003.
[30] MATHESON F E,NGUYEN M L,COOPER A B,et al.Fate of 15N-nitrate in unplanted,planted and harvested riparian wetland soil microcosms[J].Ecol Eng,2002,19(4):249-264. DOI:10.1016/S0925-8574(02)00093-9.
[31] 龙虹竹,汪涛,田琳琳,等.川中丘陵区农业源头沟渠反硝化速率特征及其影响因素[J].重庆师范大学学报(自然科学版),2016,33(4):166-172.LONG H Z,WANG T,TIAN L L,et al.Denitrification variations and influencing factors in agriculture headwater ditch in the hilly area of Sichuan central basin[J].J Chongqing Norm Univ(Nat Sci Ed),2016,33(4):166-172. DOI:10.11721/cqnuj20160402.
[32] SOTTA E D,CORRE M D,VELDKAMP E.Differing N status and N retention processes of soils under old-growth lowland forest in eastern Amazonia,Caxiuanã,Brazil[J].Soil Biol Biochem,2008,40(3):740-750. DOI:10.1016/j.soilbio.2007.10.009.
[33] HARDISON A K,ALGAR C K,GIBLIN A E,et al.Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium(DNRA)and N2 production[J].Geochimica et Cosmochimica Acta,2015,164:146-160. DOI:10.1016/j.gca.2015.04.049.
[34] 邓峰煜. 长江口硝酸盐异化还原过程及其影响因素研究[D]. 上海: 华东师范大学, 2016. DENG F Y. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze estuary [D]. Shanghai: East China Normal University, 2016.
[35] KREILING R M,RICHARDSON W B,CAVANAUGH J C,et al.Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake:the role of rooted aquatic vegetation[J].Biogeochemistry,2011,104(1/2/3):309-324. DOI:10.1007/s10533-010-9503-9.
[36] FERNANDES S O,BONIN P C,MICHOTEY V D,et al.Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J].Sci Rep,2012,2(1):419. DOI:10.1038/srep00419.
[37] STROHM T O,GRIFFIN B,ZUMFT W G,et al.Growth yields in bacterial denitrification and nitrate ammonification[J].Appl Environ Microbiol,2007,73(5):1420-1424. DOI:10.1128/AEM.02508-06.
[38] 章振亚,丁陈利,肖明.崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J].生态学报,2012,32(21):6636-6646.ZHANG Z Y,DING C L,XIAO M.The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary[J].Acta Ecol Sin,2012,32(21):6636-6646. DOI:10.5846/stxb201109201385.
[39] NIE M,WANG M,LI B.Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary,China[J].Ecol Eng,2009,35(12):1804-1808. DOI:10.1016/j.ecoleng.2009.08.002.
[40] GROFFMAN P M.Wetland denitrification:Influence of site quality and relationships with wetland delineation protocols[J].Soil Sci Soc Am J,1997,61(1):323-329. DOI:10.2136/sssaj1997.03615995006100010047x.
[41] ZHANG C B,LIU W L,HAN W J,et al.Responses of dissimilatory nitrate reduction to ammonium and denitrification to plant presence,plant species and species richness in simulated vertical flow constructed wetlands[J].Wetlands,2017,37(1):109-122. DOI:10.1007/s13157-016-0846-4.
[42] STEVENS R J,LAUGHLIN R J,MALONE J P.Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen[J].Soil Biol Biochem,1998,30(8/9):1119-1126. DOI:10.1016/S0038-0717(97)00227-7.
[43] 李丹,梁锡宏,李政威,等.一株同步硝化-反硝化菌的絮凝特性[J].生物加工过程,2019,17(1):104-109.LI D,LIANG X H,LI Z W,et al.Aggregation characteristics of a nitrifying-denitrifying bacterium[J].Chinese Journal of Bioprocess Engineering,2019,17(1):104-109.DOI: 10. 3969 /j. issn. 1672-3678.2019.01.014.
[44] 张海涛,张迪龙,洪梅,等.碳源对潜流带中氮素迁移转化影响的实验研究[J].人民长江,2014,45(14):22-26.ZHANG H T,ZHANG D L,HONG M,et al.Experimental study on effect of carbon sources on nitrogen migration in hyporheic zone[J].Yangtze River,2014,45(14):22-26. DOI:10.16232/j.cnki.1001-4179.2014.14.009.

相似文献/References:

[1]汲玉河,栾金花.三江平原植被特征与动态分析[J].南京林业大学学报(自然科学版),2004,28(06):079.[doi:10.3969/j.jssn.1000-2006.2004.06.021]
 JI Yu-he,LUAN Jin-hua.The Character and the Mechanism of the Vegetation Development in Sanjiang Plain in the Past Fifty Years[J].Journal of Nanjing Forestry University(Natural Science Edition),2004,28(05):079.[doi:10.3969/j.jssn.1000-2006.2004.06.021]
[2]权 伟,郑方东,戎建涛.浙江乌岩岭7种林分土壤碳密度及碳氮比分布特征[J].南京林业大学学报(自然科学版),2019,43(01):175.[doi:10.3969/j.issn.1000-2006.201803039]
 QUAN Wei,ZHENG Fangdong,RONG Jiantao.Soil carbon density and C/N distribution of seven forest types in Wuyanling Nature Reserve, Zhejiang Province[J].Journal of Nanjing Forestry University(Natural Science Edition),2019,43(05):175.[doi:10.3969/j.issn.1000-2006.201803039]

备注/Memo

备注/Memo:
收稿日期:2019-04-25 修回日期:2020-05-28 基金项目:国家自然科学基金项目(41375149); 江苏高校优势学科建设工程资助项目(PAPD)。 第一作者:王新新(502601073@qq.com)。*通信作者:韩建刚(hanjiangang76@126.com),教授,博士,ORCID(0000-0003-4415-627X)。
更新日期/Last Update: 1900-01-01