[1]张赟齐,刘 晨,刘 阳,等.叶幕微域环境对无患子果实产量和品质的影响[J].南京林业大学学报(自然科学版),2020,44(05):189-198.[doi:10.3969/j.issn.1000-2006.202001031.]
 ZHANG Yunqi,LIU Chen,LIU Yang,et al.Effects of canopy micro-environment on fruit yield and quality characteristicsof Sapindus mukorossi[J].Journal of Nanjing Forestry University(Natural Science Edition),2020,44(05):189-198.[doi:10.3969/j.issn.1000-2006.202001031.]
点击复制

叶幕微域环境对无患子果实产量和品质的影响
分享到:

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

卷:
44
期数:
2020年05期
页码:
189-198
栏目:
研究论文
出版日期:
2020-09-23

文章信息/Info

Title:
Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi
文章编号:
1000-2006(2020)05-0189-10
作者:
张赟齐123刘 晨1刘 阳13叶常奇13张 萌1 贾黎明13郝艳宾2苏淑钗13*
(1. 北京林业大学,省部共建森林培育与保护教育部重点实验室,北京 100083; 2. 北京市林业果树科学研究院, 北京 100093; 3. 北京林业大学,国家能源非粮生物质原料研发中心,北京 100083)
Author(s):
ZHANG Yunqi123 LIU Chen1 LIU Yang13 YE Changqi13 ZHANG Meng1 JIA Liming13 HAO Yanbin2 SU Shuchai13*
(1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; 2. Beijing Academy of Forestry and Pomology Sciences, Beijing 100093, China; 3. National Energy R&D Center for Non-food Biomass, Beijing Forestry University, Beijing 100083, China)
关键词:
无患子 微域环境因子 果实性状 回归模型
Keywords:
Sapindus mukorossi micro-environmental factors fruit characteristics regression models
分类号:
S663.1
DOI:
10.3969/j.issn.1000-2006.202001031.
文献标志码:
A
摘要:
【目的】在叶幕尺度上,通过分析微域环境和果实产量、品质的关系来揭示叶幕微域环境对无患子果实的影响,并为后续无患子叶幕结构优化和营造适宜微环境提供理论依据和技术支持。【方法】以福建建宁地区进入稳定结实期的10年生自然圆头形无患子为研究对象,采用小格子法将整个叶幕分成144个小区,在整个生长期内逐月测定小区的微域环境因子,并在采收期测定各小区果实产量指标,以此来绘制整个生长期微域环境因子和产量的叶幕空间分布三维图; 根据距离树干位置远近和自然分层现象将144个小区归并到9个不同的叶幕大区域中,对大区域的微域环境因子和果实产量、品质进行差异显著性分析; 分层探讨微域环境因子和果实特征的相关性,并依此构建果实产量、品质与叶幕微域环境因子的回归预测模型,最终得到无患子果实优质丰产的微域环境条件。【结果】①随着叶幕区域由内膛到外围、由下层到上层,整个生长季的平均温度分别增加了0.3 和1.5 ℃、平均光合有效辐射分别增加了330.76和463.53 μmol/(m2·s)、平均相对湿度分别下降了1.1%和3.0%,果实产量显著增加,下、中和上层果实产量比例为8:17:75,内、中和外围果实产量比例为24:32:44。水平方向上微域环境和果实产量的差异明显小于垂直方向的差异,结实部位主要集中在叶幕外围和上层; ②叶幕9个大区域的果实数量、鲜果产量、干果产量、果实含水率、单果干质量和油产量均存在显著性差异,但假果皮占果质量比、出籽率、种子出仁率和种仁含油率的差异均不显著; ③果实产量、种子出仁率、油产量与温度、光合有效辐射均呈显著正相关而与相对湿度呈显著负相关。光合有效辐射对果实产量、品质的影响最大,与果实产量的相关系数高达0.8,温度对果实特征的影响仅次于光合有效辐射,而相对湿度对果实特征的影响相对较小; ④通过构建叶幕微域环境因子和果实特征的单因素二次回归模型可以得到无患子果实优质丰产的微域环境条件为:温度28~30 ℃,相对湿度小于74%,光合有效辐射830~1 203 μmol/(m2·s); ⑤构建的多元回归模型拟合度更高,对果实和油产量的估算更准确,可用于自然圆头形无患子果实和油产量的初步预测。【结论】叶幕微域环境因子影响果实特征的形成,其协同效应对无患子果实产量、品质的影响更大; 叶幕中、下层果实产量、品质更强烈地受到微域环境的影响,通过基于叶幕结构和结实特性的园艺措施改善中、下层叶幕微域环境有利于无患子果实产量、品质的整体提高
Abstract:
【Objective】Fruit yield and quality characteristics are closely related to the canopy micro-environment, but the specific relationships have been unclear. Analyzing the relationship between micro-environmental factors and fruit characteristics can reveal the effect of the canopy micro-environmental factors on Sapindus mukorossi fruit characteristics, and provide a theoretical basis and technical information for optimization of canopy structure and the construction of favorable micro-environments. 【Method】In this study, in Jianning County of Fujian Province, 10-year-old S. mukorossi trees with a stable fruiting stage were chosen as test samples. The whole of the natural round-head canopy was divided into 144 small measuring areas. During the whole growing period from May to October in 2017, the canopy micro-environmental factors were measured monthly in these areas. The fruit yield and quality characteristics were determined immediately after harvest. Based on the measured values of micro-environmental factors and fruit yield in different parts of the canopy, 3D distribution maps were drawn. According to the distance from the trunk and the vertical stratification of the canopy, the small measuring areas were grouped into nine different canopy areas, and the significant differences in micro-environmental factors and fruit characteristics were analyzed. The correlations between micro-environmental factors and fruit characteristics in different vertical layers were also analyzed, and the regression models of fruit characteristics were established. Finally, the micro-environmental conditions for the high fruit yield and quality were assessed. 【Result】① Within the canopy from inside to outside and from bottom to top, the average temperature in the growing season increased by 0.3 and 1.5 ℃, respectively; the average photosynthetically active radiation of the growing season increased by 330.76 and 463.53 μmol/(m2·s), respectively; the average relative humidity of growing season decreased by 1.1% and 3.0%, respectively. The ratio of fruit yield of the lower, middle and upper layers was 8:17:75, and that of the inner, middle and peripheral layers was 24:32:44. The differences in the micro-environment and fruit yield in the horizontal direction were obviously smaller than that in the vertical direction. Fruits were mainly distributed in the periphery and upper layer. ② There were significant differences in the fruit number, fresh fruit yield, dry fruit yield, the water content of the fruit, single dried fruit weight and oil yield in nine canopy areas, but there were no significant differences in the dried aril content ratio, the dried seed content ratio, the kernel content of the dried seed, and the oil content of the kernel. ③ Fruit yields, the kernel content of the dried seed, and the oil yield all had significant positive correlations with temperature and photosynthetically active radiation, but a significant negative correlation with relative humidity. Photosynthetically active radiation had the greatest impact on fruit yield and quality, followed by temperature and relative humidity. ④ From the single factor regression models, it was deduced that suitable micro-environmental conditions for high fruit yield and quality are: temperature between 28-30 ℃, relative humidity no more than 74%, and photosynthetically active radiation between 830-1 203 μmol/(m2·s). ⑤Multivariate regression models were suitable for the S. mukorossi fruit and oil yield prediction with a natural round-head canopy. 【Conclusion】The synergistic effect of micro-environmental factors greatly influences fruit yield and quality characteristics of S. mukorossi. The fruit characteristics in the central and lower layers are strongly affected by the micro-environment, so the improvement of the micro-environment of the middle and lower layers through horticultural measures based on the canopy structures and fruit-bearing habits can improve fruit characteristics

参考文献/References:


[1] CHEN Y H,CHIANG T H,CHEN J H.Properties of soapnut(Sapindus mukorossi)oil biodiesel and its blends with diesel[J].Biomass Bioenerg,2013,52:15-21. DOI:10.1016/j.biombioe.2013.02.025.
[2] 国家林业局.全国林业生物质能源发展规划(2011-2020年)[Z].北京:2013.The State Forestry Administration of China. National forestry biomass energy development plan for 2011-2020[Z].Beijing:2013.
[3] 张大鹏.叶幕微气候及其调控生物学研究中的基本概念和内涵[J].葡萄栽培与酿酒,1993(2):1-4.ZHANG D P.Basic concepts and connotations in the study of canopy microclimate and its regulatory biology[J].Sino-Overseas Grapevine Wine,1993(2):1-4. DOI: 10.13414/j.cnki.zwpp.1993.02.001.
[4] JOHNSON D S,RIDOUT M S.Effects on the quality of stored apple fruit[C]//SHEWFELT R L,BRÜCKNER B. Fruit and vegetable quality: an integrated view.Lancaster:Technomic Publishing,2000:67-84.
[5] DOKOOZLIAN N K,KLIEWER W M.The light environment within grapevine canopies: I.Description and seasonal changes during fruit development[J].Am J Enol Vitic,1995,46(2):209-218.
[6] MARTIN D,GROSE C,FEDRIZZI B,et al.Grape cluster microclimate influences the aroma composition of Sauvignon Blanc wine[J].Food Chem,2016,210:640-647. DOI:10.1016/j.foodchem.2016.05.010.
[7] MIKA A,BULER Z,TREDER W,et al.Relationship between fruit distribution within ‘Jonagold' apple canopy,fruit quality and illumination[J].J Fruit Ornam Plant Res,2002,10:75-84.
[8] ZHANG J J,SERRA S,S LEISSO R,et al.Effect of light microclimate on the quality of ‘d'Anjou' pears in mature open-centre tree architecture[J].Biosyst Eng,2016,141:1-11. DOI:10.1016/j.biosystemseng.2015.11.002.
[9] GULLO G,MOTISI A,ZAPPIA R,et al.Rootstock and fruit canopy position affect peach[Prunus persica(L.)Batsch](cv.Rich May)plant productivity and fruit sensorial and nutritional quality[J].Food Chem,2014,153:234-242. DOI:10.1016/j.foodchem.2013.12.056.
[10] WEN Y,SU S C,ZHANG H C.Effects of canopy microclimate on Chinese chestnut(Castanea mollissima Blume)nut yield and quality[J].Forests,2020,11(1):97. DOI:10.3390/f11010097.
[11] MA W C Y,WANG Y W N.Effects of canopy microclimate on fruit yield and quality of Camellia oleifera[J].Sci Hortic,2018,235:132-141. DOI:10.1016/j.scienta.2017.12.042.
[12] LANDSBERG J J,GOWER S T.Canopy architecture and microclimate[M]//Applications of Physiological Ecology to Forest Management.Amsterdam:Elsevier,1997:51-88. DOI:10.1016/b978-012435955-0/50003-0.
[13] MINAS I S,TANOU G,MOLASSIOTIS A.Environmental and orchard bases of peach fruit quality[J].Sci Hortic,2018,235:307-322. DOI:10.1016/j.scienta.2018.01.028.
[14] 魏钦平,王丽琴,杨德勋,等.相对光照度对富士苹果品质的影响[J].中国农业气象,1997,18(5):12-14. WEI Q P,WANG L Q,YANG D X,et al.Effect of relative light intensity on fruit quality of “Fuji apple”[J].Chin J Agrometeorology,1997,18(5):12-14.
[15] MURAKAMI K,MATSUDA R,FUJIWARA K.Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of Phaseolus vulgaris:effects of photosynthetic photon flux density(PPFD)versus spectrum[J].Plant Biol,2014,16(1):16-21. DOI:10.1111/plb.12055.
[16] GAO Y,GAO S L,JIA L M,et al.Canopy characteristics and light distribution in Sapindus mukorossi Gaertn.are influenced by crown architecture manipulation in the hilly terrain of southeast China[J].Sci Hortic,2018,240:11-22. DOI:10.1016/j.scienta.2018.05.034.
[17] HARDWICK S R,TOUMI R,PFEIFER M,et al.The relationship between leaf area index and microclimate in tropical forest and oil palm plantation:forest disturbance drives changes in microclimate[J].Agric For Meteorol,2015,201:187-195. DOI:10.1016/j.agrformet.2014.11.010.
[18] GARRATT J.Review:the atmospheric boundary layer[J].Earth-Sci Rev,1994,37(1/2):89-134. DOI:10.1016/0012-8252(94)90026-4.
[19] WILLIAMS-LINERA G,DOMÍNGUEZ-GASTEL V,GARCÍA-ZURITA M E.Microenvironment and floristics of different edges in a fragmented tropical rainforest[J].Conserv Biol,1998,12(5):1091-1102. DOI:10.1046/j.1523-1739.1998.97262.x.
[20] 刘瑞文,孙晓刚,郭太君,等.4种园林树木树冠微环境与增湿降温的关系[J].东北林业大学学报,2015,43(3):43-47,78.LIU R W,SUN X G,GUO T J,et al.Relationship of four landscape trees canopy microenvironment with humidity increase and temperature reduction[J].J Northeast For Univ,2015,43(3):43-47,78. DOI:10.13759/j.cnki.dlxb.20150119.006.
[21] BASILE B,SOLARI L I,DEJONG T M.Intra-canopy variability of fruit growth rate in peach trees grafted on rootstocks with different vigour-control capacity[J].J Hortic Sci Biotechnol,2007,82(2):243-256. DOI:10.1080/14620316.2007.11512226.
[22] HE F L,WANG F,WEI Q P,et al.Relationships between the distribution of relative canopy light intensity and the peach yield and quality[J].Agric Sci China,2008,7(3):297-302. DOI:10.1016/S1671-2927(08)60069-3.
[23] TRENTACOSTE E R,GÓMEZ-DEL-CAMPO M,RAPOPORT H F.Olive fruit growth,tissue development and composition as affected by irradiance received in different hedgerow positions and orientations[J].Sci Hortic,2016,198:284-293. DOI:10.1016/j.scienta.2015.11.040.
[24] TRAD M,GAALICHE B,RENARD C M G C,et al.Inter-and intra-tree variability in quality of figs.Influence of altitude,leaf area and fruit position in the canopy[J].Sci Hortic,2013,162:49-54. DOI:10.1016/j.scienta.2013.07.032.
[25] JONES H G.Plants and microclimate:a quantitative approach to environmental plant physiology[M].London: Cambridge University Press, 2013.
[26] KRAMER P J, BOYER J S. Water relations of plants and soils[M].San Diego: Academic Press, 1995.
[27] 李晔男,刘彬昕,关欣,等.高寒地区钙果引种栽培试验[J].森林工程,2019,35(2):27-31.LI Y N,LIU B X,GUAN X,et al.Introduction experiment of Cerasus humilis in alpine-cold area[J].For Eng,2019,35(2):27-31. DOI:10.16270/j.cnki.slgc.2019.02.004.
[28] 黄海静,符国槐,杨再强,等.设施栽培对杨梅生长发育和品质的影响[J].南京林业大学学报(自然科学版),2012,36(6):47-52.HUANG H J,FU G H,YANG Z Q,et al.Effect of protected cultivation to the development and quality of Myrica rubra[J].J Nanjing For Univ(Nat l Sci Ed),2012,36(6):47-52. DOI:10.3969/j.jssn.1000-2006.2012.06.010.
[29] 王建平,王纪章,周 静,等.光照对农林植物生长影响及人工补光技术研究进展[J].南京林业大学学报(自然科学版),2020,44(1):215-222.WANG J P,WANG J Z,ZHOU J,et al.Recent progress of artificial lighting technique and effect of light on plant growth[J].J Nanjing For Univ(Nat Sci Ed),2020,44(1):215-222. DOI:10.3969/j.issn.1000-2006.201806033.
[30] CHERBIY-HOFFMANN S U,SEARLES P S,HALL A J,et al.Influence of light environment on yield determinants and components in large olive hedgerows following mechanical pruning in the subtropics of the Southern Hemisphere[J].Sci Hortic,2012,137:36-42. DOI:10.1016/j.scienta.2012.01.019.
[31] TRENTACOSTE E R,CONNOR D J,GÓMEZ-DEL-CAMPO M.Effect of row spacing on vegetative structure,fruit characteristics and oil productivity of N-S and E-W oriented olive hedgerows[J].Sci Hortic,2015,193:240-248. DOI:10.1016/j.scienta.2015.07.013.
[32] WEN Y,ZHANG Y Q,SU S C,et al.Effects of tree shape on the microclimate and fruit quality parameters of Camellia oleifera Abel[J].Forests,2019,10(7):563. DOI:10.3390/f10070563.
[33] GROSSMAN Y L,DEJONG T M.Training and pruning system effects on vegetative growth potential,light interception,and cropping efficiency in peach trees[J].J Am Soc Hortic Sci,1998,123(6):1058-1064. DOI:10.21273/jashs.123.6.1058.
[34] 刘博,罗桂杰,金倩,等. 避雨栽培对宿晓红葡萄生长发育及果实品质的影响[J].江苏林业科技,2018,45(3):7-10.LIU B, LUO G J,JIN Q, et al. Effect of rain-shelter cultivation on growth and fruit quality of grape Suxiaohong [J]. J Jiangsu For Sci Technol,2018,45(3):7-10. DOI: 10.3969/j.issn.1001-7380.2018.03.002.
[35] 王文元,赖秀芳,张恩慧,等. 15个观赏海棠果实品质分析[J].江苏林业科技,2018,45(1):1-4.WANG W Y,LAI X F,ZHANG E H, et al. Analysis of fruit quality of 15 ornamental crabapple varieties [J]. J Jiangsu For Sci Technol,2018,45(1):1-4. DOI: 10.3969/j.issn.1001-7380.2018.01.001.
[36] CASTILLO-RUIZ F J,SOLA-GUIRADO R R,CASTRO-GARCIA S,et al.Pruning systems to adapt traditional olive orchards to new integral harvesters[J].Sci Hortic,2017,220:122-129. DOI:10.1016/j.scienta.2017.03.043.

相似文献/References:

[1]卫星杓,戴腾飞,刘诗琦,等.施肥对无患子叶片养分动态及产量的影响[J].南京林业大学学报(自然科学版),2018,42(05):017.[doi:10.3969/j.issn.1000-2006.201803015]
 WEI Xingbiao,DAI Tengfei,LIU Shiqi,et al.Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn.[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(05):017.[doi:10.3969/j.issn.1000-2006.201803015]

备注/Memo

备注/Memo:
收稿日期:2020-01-14 修回日期:2020-05-13 基金项目:科技基础资源调查专项(2019FY100803); 中央高校基本科研业务费专项资金资助项目(2015ZCQ-LX-02)。 第一作者:张赟齐(zhyq1985@126.com),助理研究员,ORCID(0000-0003-0260-0491)。*通信作者:苏淑钗(sushuchai@sohu.com),教授,ORCID(0000-0002-9994-6896)。
更新日期/Last Update: 1900-01-01