基于ETM+遥感影像的森林植被信息提取方法研究

沈明霞1,何瑞银1,丛静华2

南京林业大学学报(自然科学版) ›› 2007, Vol. 31 ›› Issue (06) : 113-116.

PDF(265923 KB)
PDF(265923 KB)
南京林业大学学报(自然科学版) ›› 2007, Vol. 31 ›› Issue (06) : 113-116. DOI: 10.3969/j.jssn.1000-2006.2007.06.027
研究论文

基于ETM+遥感影像的森林植被信息提取方法研究

  • 沈明霞1,何瑞银1,丛静华2
作者信息 +

Methodological Study of Information Extraction of Forest Using ETM+ and Remote Sensing Image

  • SHEN Ming-xia1, HE Rui-yin1, CONG Jing-hua2
Author information +
文章历史 +

摘要

<正>运用复合经营、保护与释放天敌等综合措施对杨树天牛进行了生态控制研究。结果表明:杨树复合经营、保护天敌与释放肿腿蜂的模式对杨树天牛的抑制效果最佳,其有虫株率、平均虫口密度和相对虫口密度较对照组分别下降66.0%、98.3%和4J.5%:释放肿腿蜂并与白僵菌结合的防治效果也明显提高。此外,肿腿蜂释放后可在杨树林间形成野外种群,并对杨树天牛具有很好的持续控制作用。据此,推荐在杨树种植区大面积实施复合经营,辅以释放肿腿蜂,以达到生态控制天牛的目的。

Abstract

The common methods of extracting information of forest using ETM+remote sensing image were discussed in this paper. According to the analysis of eigenvalue and relativity, it was found that bands of TM3, TM4 and TM5 had small relativity and contain ample information. Bands of TM3, TM4 and TM5 were merged with PAN bands using Brovey transform. NDVIR was obtained by computing Normalized Difference Vegetation Index for bands of TM4R and TM3R of merged remote sensing image. Then the combination image of fusion remote sensing images and NDVIR image was classified by method of maximum likelihood. The forest cover rate was computed to be 38.63% according to the classification.

引用本文

导出引用
沈明霞1,何瑞银1,丛静华2. 基于ETM+遥感影像的森林植被信息提取方法研究[J]. 南京林业大学学报(自然科学版). 2007, 31(06): 113-116 https://doi.org/10.3969/j.jssn.1000-2006.2007.06.027
SHEN Ming-xia1, HE Rui-yin1, CONG Jing-hua2. Methodological Study of Information Extraction of Forest Using ETM+ and Remote Sensing Image[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2007, 31(06): 113-116 https://doi.org/10.3969/j.jssn.1000-2006.2007.06.027
中图分类号: TP391.41    S220.39   

PDF(265923 KB)

Accesses

Citation

Detail

段落导航
相关文章

/