武夷山不同海拔植被带土壤活性有机碳的季节变化

徐侠1,3,权伟1,汪家社2,方燕鸿2,阮宏华1*,叶镜中1

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (03) : 55-59.

PDF(840973 KB)
PDF(840973 KB)
南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (03) : 55-59. DOI: 10.3969/j.jssn.1000-2006.2009.03.013
研究论文

武夷山不同海拔植被带土壤活性有机碳的季节变化

  • 徐侠1,3,权伟1,汪家社2,方燕鸿2,阮宏华1*,叶镜中1
作者信息 +

Seasonal variations of soil microbial available carbon in four plant communities along the altitude gradient in Wuyi Mountain

  • XU Xia1,3, QUAN Wei1, WANG Jiashe2, FANG Yanhong2, RUAN Honghua1*, YE Jingzhong1
Author information +
文章历史 +

摘要

采用连续熏蒸培养法(Sequential fumigationincubation),测定福建武夷山自然保护区不同海拔具有代表性的中亚热带常绿阔叶林、针叶林、亚高山矮林以及高山草甸土壤中活性有机碳(MAC)的变化,分析MAC与土壤湿度、土壤温度、土壤总有机碳之间的关系。结果表明:(1)1年中,MAC在不同林分的0~10、10~25 cm土层中的变化从大到小为:夏季、春季、秋季、冬季;每一季节中,不同林分的MAC从大到小为草甸、矮林、针叶林、阔叶林,且0~10 cm土层中的MAC含量显著高于10~25 cm土层中的;(2)在不同土层中,MAC与土壤湿度、土壤温度、土壤总有机碳之间均呈极显著相关。总之,武夷山山地森林MAC季节变化明显,夏季最大,冬季最小;土壤湿度、土壤温度可能是MAC季节变化的主要调控因子。

Abstract

Microbial available carbon (MAC) was one of the most active and important parts of carbon cycle in terrestrial ecosystem. MAC dynamics were examined through a year, using a sequential fumigationincubation procedure, in evergreen broadleaf forest(EBF), coniferous forest(CF), dwarf forest(DF) and alpine meadow(AM), respectively, along the altitude in the natural preserve area in Wuyi Mountain in Fujian province, China, and relationship between MAC and soil moisture, soil temperature, and coil total organic carbon were analyzed. The results indicated: (1) Seasonal variations of microbial available carbon in each site along the altitude was significant both in 0—10 cm and 10—25 cm soil layers. In different types of forests, the magnitude of MAC was in a order of AM, DF, CF and EBF. MAC was significantly higher in the 0—10cm soil layer than that in the 10—25cm’s. (2) There were positive correlations between MAC and soil moisture, soil temperature in each site and different layers. Our study showed that the MAC had obvious variations during a year, it reached the highest in summer, and the lowest in winter. MAC was greatly affected by soil moisture and soil temperature.

引用本文

导出引用
徐侠1,3,权伟1,汪家社2,方燕鸿2,阮宏华1*,叶镜中1. 武夷山不同海拔植被带土壤活性有机碳的季节变化[J]. 南京林业大学学报(自然科学版). 2009, 33(03): 55-59 https://doi.org/10.3969/j.jssn.1000-2006.2009.03.013
XU Xia1,3, QUAN Wei1, WANG Jiashe2, FANG Yanhong2, RUAN Honghua1*, YE Jingzhong1. Seasonal variations of soil microbial available carbon in four plant communities along the altitude gradient in Wuyi Mountain[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2009, 33(03): 55-59 https://doi.org/10.3969/j.jssn.1000-2006.2009.03.013
中图分类号: S714    X171.1   

参考文献

[1]Coleman D C, Crossley D A, Hendrix P. Fundamentals of soil Ecology[M]. New York: Academic Press, 1996.
[2]Harrison K G, Broecker W S, Bonani G. The effect of changing land use on soil radiocarbon[J]. Science, 1993, 262: 725-726.
[3]Wander M M, Traina S J, Srinne B R. The effects of organic and conventional management on biological cutive soil organic matter fraction[J]. Science Society of America Journal, 1994, 58: 1130-1139.
[4]Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1993, 57: 1071-1076.
[5]王晶,谢宏图,朱平,等. 土壤活性有机质的内涵和现代分析方法概述[J]. 生态学杂志, 2003, 22(6): 109-112.
[6]杨丽霞,潘剑君. 土壤活性有机碳库测定方法研究进展[J]. 土壤通报,2004,35(4):502-506.
[7]Zou X M, Ruan H H, Fua Y, et al. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigationincubation procedure[J]. Soil Biology & Biochemistry, 2005, 37: 1923-1928.
[8]姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学,2005,41(1):10-13.
[9]Silver W L. The potential effects of elevated CO2 and climate change on tropical forest soils and biogeochemical cycling[J]. Climate Change, 1998, 39: 337-361.
[10]Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia[J]. Global Biogeochemical Cycles, 1995(9): 515-528.
[11]方燕鸿. 武夷山米槠、甜槠常绿阔叶林的物种组成及多样性分析[J]. 生物多样性,2005,13(2):148-155.
[12]陈月琴,徐侠,阮宏华,等. 苏南丘陵地区天然次生栎林与火炬松人工林土壤有效碳[J]. 生态学杂志,2007,26(12):2028-2034.
[13]Diaz Ravina M, Acea M J, Carballas T. Seasonal changes in microbial biomass and nutrient flush in forest soils[J]. Biology and Fertility of Soils, 1995, 19: 220-226.
[14]Piao H C, Hong Y T, Yuan Z Y. Seasonal changes of microbial biomass carbon related to climatic factors in soils from areas of southwest China[J]. Biology and Fertility of Soils, 2000, 30(4): 294-297.
[15]Arnold S S, Fernandez I J, Rustad L E. Microbial response of and acid forest soil to experimental soil warming[J]. Biology and Fertility of Soils, 1999, 30(3): 239-244.
[16]Van G M, Ladd J N, Amato M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology & Biochemistry, 1992, 24: 103-111.
[17]Fisher F M, Gosz J R. Effects of trenching on soil processes and properties in a New Mexico mixedconifer forest[J]. Biology and Fertility of Soils, 1986(2): 35-42.
[18]Acea M J, Carballas T. Principal components analysis of the soil microbial populations of humid zone of Galicia (Spain)[J]. Soil Biology & Biochemistry, 1990, 22: 749-759.
[19][美]亚历山大 M. 土壤微生物学导论[M]. 北京:科学出版社, 1983.
[20]陈国潮,何振立,姚槐应. 红壤微生物量的季节性变化研究[J]. 浙江大学学报:农业与生命科学版,1999,25(4):387-388.
[21]Singh J S, Reghbanshi A S, Singh R S, et al. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature, 1989, 338: 499-500.
[22]Roy A, Singh K P. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics[J]. Soil Biology & Biochemistry, 2003, 35: 365-372.
[23]Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime[J]. European Journal of Soil Biology, 2004, 40: 87-94.
[24]陈珊,张常钟,刘东波,等. 东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系[J]. 生态学报,1995,15(1):91-94.
[25]Jonasson S, Michelsen A, Schmidt I K, et al. Responses in soil microbes and plants to changed temperature, nutrient and light regimes in the Arctic[J]. Ecology, 1999, 80: 1828-1843.
[26]Michelsen A, Graglia E, Schmidt I K, et al. Differential responses of grass and a dwarf shrub to long term changes in soil microbial biomass C, N and P, following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath[J]. New Phytol, 1999, 143: 523-538.
[27]Anders M, Michael A, Michael J, et al. Carbon stocks, soil respiration and microbial biomass in fireprone tropical, grassland, woodland and forest ecosystems[J]. Soil Biology & Biochemistry, 2004, 36: 1707-1711.
[28]Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixedoak forest ecosystem of Manipur, Northeast India Fertility[J]. Soils, 2006, 19: 220-226.
[29]Anderson T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology & Biochemistry, 1989, 21: 471-479.
[30]Insam H, Domsch K H. Relationship between soil organic carbon and microbial biomass on consequences of reclamation sites[J]. Microbial Ecology Microbial Ecology, 1988, 15(2): 177-188.
[31]Bauhus J, Pare D, Cote L. Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biology & Biochemistry, 1998, 30(8): 1077-1089.
[32]Smith J L, Paul E A. The significance of soil microbial biomass estimations[C]//In: Bollag J M, Stotzky. Soil Biochemistry. New York: Marcel Dekker, 1991.

基金

收稿日期:2008-06-20修回日期:2008-09-10基金项目:国家自然科学基金资助项目(30370256;30670313);中国森林生态系统服务功能定位观测与评估技术研究(200704005/wb-02)作者简介:徐侠(1982—),现为美国俄克拉荷马大学(University of Oklahoma, Norman)博士生。*阮宏华(通讯作者),教授,研究方向为全球气候变化与土壤碳循环。Email: hruan1690@yahoo.com。引文格式:徐侠, 权伟,汪家社,等. 武夷山不同海拔植被带土壤活性有机碳的季节变化[J]. 南京林业大学学报:自然科学版,2009,33(3):55-59.

PDF(840973 KB)

Accesses

Citation

Detail

段落导航
相关文章

/