以长白山金沟岭林场天然云冷杉林、杨桦次生林、人工落叶松林3种森林类型为研究对象,构建了林下灌木层分布较广泛的10个物种以植冠面积(Ac)、植冠体积(Vc)、地径平方与株高乘积(D2H)为自变量的器官生物量模型,并按照灌木形态的不同分别乔木型灌木(主干明显)、典型灌木(分枝多,主干不明显)构建混合物种模型,选出R2较大、SEE较小的模型作为最优模型,研究了不同森林类型林下灌木层生物量及其在不同物种和器官中的分配。结果表明:单一物种器官生物量最优模型多为线性、二次或者三次方程,干、枝最优模型采用的自变量多为D2H或者Vc,叶生物量最优模型采用的自变量多为Ac或者Vc,根的多为D2H。混合物种模型的最优方程为幂函数或三次方程,最优模型的自变量除典型灌木枝模型为Vc外,其他各器官模型自变量都为D2H。计算得到的天然云冷杉林、杨桦次生林、人工落叶松林林下灌木层生物量分别为4 01359、3 95066和4 64936 kg/hm2,且乔木型灌木对生物量的贡献率大于典型灌木。
Abstract
With 10 common species of understory shrub in three natural forest types,including SpruceFir Mixed forests, PolarBirch secondary forests and Larch plantation in Jinggouling Plantation Changbai Mountains as test objects, crown area(Ac),project volume(Vc), square ground diameter by height(D2H) were used as variables in component biomass models. According to the growth forms, treelike(single trunked) mixed models and shrublike(multistemmed or low branching) mixed models were built. The shrub biomass along with its distribution in different species and components were investigated using the bestfit models which were judged by high R2 and low SEE. The results showed that the bestfit speciesspecific component model forms were linear, quadratic or cubic equations, the variables in stem and branch models were D2H or Vc, and in leaf models were Ac or Vc ,while in root models were D2H. The bestfit mixed model forms were power or cubic equation, the variables in these models were D2H while the branch of mixed model of shurblike plants was Vc .The biomass of understory shrub in natural SpruceFir Mixed forests, PolarBirch secondary forests and Larch plantation was 4 013.59,3 950.66 and 4 649.36 kg/hm2 respectively, and treelike plants make more biomass contribution than shrublike plants.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]曾慧卿,刘琪璟,冯宗炜,等.基于冠幅和植株高度的檵木生物量回归方程[J]. 南京林业大学学报:自然科学版,2006,30(4):101-104.
[2]邹春静,卜军,徐文铎.长白松人工林群落生物量和生产力的研究[J]. 应用生态学报, 1995,6(2):123-127.
[3]贺金生,王其兵,胡东.长江三峡地区典型灌丛的生物量及其再生能力[J]. 植物生态学报, 1997,21(6):512-520.
[4]方江平,项文化.西藏色季拉山原始冷杉林生物量及其分布规律[J].林业科学, 2008,44(5):17-23.
[5]张海清,刘琪璟,陆佩玲,等.千烟洲试验站几种常见灌木生物量估测[J]. 林业调查规划, 2005,30(5):43-49.
[6]张倩媚,温达志,叶万辉,等. 南亚热带常绿阔叶林林下层植物的生物量及其测定方法探讨[J]. 生态科学, 2000,19(4):62-66.
[7]Alaback B P. Biomass regression equations for understory plants in coastal alaska: effects of species and sampling design on estimates[J]. Northwest Science, 1986,60(2):187-196.
[8]Yarie J, Mead B R. Biomass regression equations for determination of vertical structure of major understory species of southeast Alaska [J]. Northwest Science,1989,63(5):221-231.
[9]Sah P J, Ross S M, Koptur S, et al. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests[J]. Forest Ecology and Management, 2004, (203):319-329.
[10]Buech R R, Rugg D J. Biomass relations of shrub components and their generality [J]. Forest Ecology and Management, 1989, 29(4) 26:257-264.
[11]Patona D,Nunez J,Bao D,et al. Forage biomass of 22 shrub species from Monfrage Natural Park(SW Spain) assessed by loglog regressin models[J]. Journal of Ard Environments, 2002,52(2):223-231.
[12]张峰,上官铁梁,李素珍. 关于灌木生物量建模方法的改进[J].生态学杂志,1993,12(6):67-69.
[13]王蕾,张宏,哈斯,等.基于冠幅直径和植株高度的灌木地上生物量估测方法研究[J]. 北京师范大学学报:自然科学版, 2004,40(5):700-704.
[14]刘国华,马克明,傅伯杰,等.岷江干旱河谷主要灌丛类型地上生物量研究[J]. 生态学报, 2003,23(9):1757-1764.
[15]赵成义,宋郁东,王玉潮.几种荒漠植物地上生物量估算的初步研究[J].应用生态学报, 2004,15(1):49-52.
[16]陈遐林,马钦彦,康峰峰,等.山西太岳山典型灌木林生物量及生产力研究[J]. 林业科学研究, 2002,15(3):304-309.
[17]刘兴良,刘世荣,宿以明,等.巴郎山川滇高山栎灌丛地上生物量及其对海拔梯度的响应[J]. 林业科学, 2006,42(2):1-7.
[18]曾慧卿,刘琪璟,冯宗炜,等.红壤丘陵区林下灌木生物量估算模型的建立及其应用[J]. 应用生态学报, 2007,18(10):2185-2190.
[19]曾小平,蔡锡安,赵平,等. 南亚热带丘陵3种人工林群落的生物量及净初级生产力[J]. 北京林业大学学报, 2008,30(6):148-152.
[20]林开敏,洪伟,俞新妥,等.杉木人工林林下植物生物量的动态特征和预测模型[J]. 林业科学, 2001,37(S1):99-105.
[21]闫文德,田大伦,焦秀梅.会同第二代杉木人工林林下植被生物量分布及动态[J].林业科学研究, 2003 ,16(3):323-327.
[22]吕勇.马尾松林下植被及其生物量的研究[J]. 中南林业调查规划, 1997,16(1):53-56.
基金
收稿日期:2010-11-09修回日期:2011-05-09基金项目:国家林业局林业公益性行业科研专项项目(200804027)作者简介:何列艳(1985—),硕士生。*亢新刚(通信作者),教授。 Email :xingangk@163. com。