耐热α-葡萄糖苷酶的诱导条件及重组酶的固定化

裴建军,吕香香,解静聪,赵林果*

南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (06) : 90-94.

PDF(867486 KB)
PDF(867486 KB)
南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (06) : 90-94. DOI: 10.3969/j.jssn.1000-2006.2012.06.018
研究论文

耐热α-葡萄糖苷酶的诱导条件及重组酶的固定化

  • 裴建军,吕香香, 解静聪, 赵林果*
作者信息 +

Inducement condition and immobilization of thermostable αglucosidase produced by Escherichia coli

  • PEI Jianjun, L Xiangxiang, XIE Jingcong, ZHAO Linguo*
Author information +
文章历史 +

摘要

以构建重组菌(JM109/pBV-220-GLZ)作为耐热α-葡萄糖苷酶的生产菌株,研究了诱导温度、诱导时间以及重组菌生长的不同阶段对重组菌生产耐热α-葡萄糖苷酶的影响,并对诱导表达的重组酶进行了固定化研究。结果表明,最佳的诱导条件是:诱导温度为40 ℃,诱导时间为14 h,在重组菌D(600)为20时诱导的酶活最高。适宜的固定化条件为:海藻酸钠20 g/L, CaCl2 20 g/L,硬化时间2 h,前交联剂戊二醛的质量分数为10 %,该条件下的酶回收率高达81 %。制备的固定化酶有较好的储存稳定性和操作稳定性,重复操作15次后,酶活为初始酶活的75 %。

Abstract

Several factors influencing αglucosidase production with the recombinant Escherichia coli haroring the JM109/pBV220GLZ were investigated. The results showed that the best inducement conditions were as follows: induction temperature 40 ℃, induction time 14 h, and at OD600 of 2.0. To determine the optimum conditions of immobilization, the concentration of sodium alginate, CaCl2, and glutaraldehyde, and solidifying time were studied. The results showed that the optimum operations were: 20 g/L sodium alginate, 20 g/L CaCl2, 1.0 % glutaraldehyde, solidifying time 2 h. Under the optimum condition, the recovery rate reached 81 %. After 15 times repeated operations, the enzyme activity remained 75 %, showing good operational stability. Thus, the superior stability of the recombinant enzyme laid the base for largescale application.

引用本文

导出引用
裴建军,吕香香,解静聪,赵林果*. 耐热α-葡萄糖苷酶的诱导条件及重组酶的固定化[J]. 南京林业大学学报(自然科学版). 2012, 36(06): 90-94 https://doi.org/10.3969/j.jssn.1000-2006.2012.06.018
PEI Jianjun, L Xiangxiang, XIE Jingcong, ZHAO Linguo*. Inducement condition and immobilization of thermostable αglucosidase produced by Escherichia coli[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2012, 36(06): 90-94 https://doi.org/10.3969/j.jssn.1000-2006.2012.06.018
中图分类号: TQ925   

参考文献

[1]岳振峰, 陈小霞, 彭志英. α-葡萄糖苷酶研究现状及进展[J]. 食品与发酵工业, 2000, 26(3): 63-67.
[2]Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarity[J]. Biochem J, 1991, 280: 309-316.
[3]Chiba S. Molecular mechanism in αglucosidase and glucoamylase[J]. Biosci Biotech Biochem, 1997, 61: 1233-1239.
[4]Wimmer B, Lottspeich F, Ritter J, et al. A novel type of thermostable alphaDglucosidase from Thermoanaerobacter thermohydrosulfuricus exhibiting maltodextrinohydrolase activity[J]. Biochem J, 1997, 328: 581-586.
[5]杨磊, 吕明生, 王淑军, 等. 超嗜热古菌Thermococcus sp. HJ21产高温α-葡萄糖苷酶条件和酶学性质初步研究[J]. 食品与发酵工业, 2008, 34(7): 1-6.
[5]毕金峰, 魏宝东. α-转移葡萄糖苷酶粗酶液的酶学性质[J]. 食品科学, 2005, 26(2): 75-78.
[7]Costantino H R, Brown S H, Kelly R M. Purification and characterization of an alphaglucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C[J]. J Bacteriol, 1990, 172(7):3654-3660.
[8]Shao W L. Isolation and characterization of hermicellulolytic enzymes from anaerobic thermohphiles[D]. Athens: University of Georgia, 1993.
[9]Martein S. Protein engineering of cellulases[J]. Biochem Biophy Acta, 2000, 1543: 239-252.
[10]Ohta T, Tokishita S, Imazuka R, et al. βGlucosidase as a reporter for the gene expression studies in Thermus thermophilus and constitutive expression of DNA repair genes[J]. Mutagenesis, 2006,21(4): 255-260.
[11]Dekker K, Yamagata H, Sakaguchi K, et al. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases[J]. J Bacteriol, 1991, 17(10): 3078-3083.
[12]丁莉, 许伟, 严明, 等. Thermus thermophilus HB8 葡萄糖异构酶在大肠杆菌中表达[J]. 生物加工过程, 2006, 4(2): 42-43.
[13]Quinn Z, Zhou K, Chen X D. Immobilization of αgalactosidase on graphite surface by glutaraldehyde[J]. J Food Eng, 2001, 48(1): 69-74.
[14]顾旭炯, 刘璘,朱巍, 等. 海藻酸钠包埋法共固定α-淀粉酶和糖化酶的研究[J]. 化学与生物工程, 2006, 23(5): 26-28.
[15]杨本宏, 蔡敬民, 吴克, 等. 海藻酸钠固定化根霉脂肪酶的制备及其性质[J]. 催化学报,2005,26(11):977-981.
[16]郑迎迎, 李大力. 壳聚糖载体的制备及脲酶的固定化研究[J]. 生物技术, 2005, 15(2): 56-59.
[17]苏二正, 夏涛, 宛晓春, 等. 单宁酶和β-葡萄糖苷酶的共固定化[J]. 食品与生物技术学报, 2006, 25(1): 40-44.
[18]Wang Y H, Jiang Y, Duan Z Y, et al. Expression and characterization of an αglucosidase from Thermoanaerobacter ethanolicus JW200 with potential for industrial application[J]. Biologia, 2009, 64(6):1053-1057.

基金

收稿日期:2012-03-16修回日期:2012-09-04
基金项目:国家自然科学基金项目(31070515);国家自然科学青年基金项目 (30900008);江苏高校优势学科建设工程资助项目(PAPD)
第一作者:裴建军,讲师,博士。 *通信作者:赵林果,教授,博士。Email:lg.zhao@163.com。
引文格式:裴建军,吕香香,解静聪,等. 耐热α-葡萄糖苷酶的诱导条件及重组酶的固定化[J]. 南京林业大学学报:自然科学版,2012,36(6):90-94.

PDF(867486 KB)

Accesses

Citation

Detail

段落导航
相关文章

/