[1] Lynd L R, Weimer P J, Van Zyl W H, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577. [2] 宋杰, 侯永发. 微晶纤维素的性质与应用[J]. 纤维素科学与技术, 1995, 3(3): 1-10.Song J, Hou Y F. The properties and utilizations of microcrystalline[J]. Journal of Cellulose Science and Technology, 1995, 3(3): 1-10. [3] Gohel M C, Jogani P D. A review of co-processed directly compressible excipients[J]. Journal of Pharmacy and Pharmaceutical Sciences, 2005, 8(1): 76-93. [4] Bains D, Boutell S L, Newton J M. The influence of moisture content on the preparation of spherical granules of barium sulphate and microcrystalline cellulose[J]. International Journal of Pharmaceutics, 1991, 69(3): 233-237. [5] Macritchie K A, Newton J M, Rowe R C. The evaluation of the rheological properties of lactose/microcrystalline cellulose and water mixtures by controlled stress rheometry and the relationship to the production of spherical pellets by extrusion/spheronization[J]. European Journal of Pharmaceutical Sciences, 2002, 17(1): 43-50. [6] Podczeck F, Knight P. The evaluation of formulations for the preparation of pellets with high drug loading by extrusion/spheronization[J]. Pharmaceutical Development and Technology, 2006, 11(3): 263-274. [7] Tan F Z, Cao Y F, Wang D Z. Preparation of high oil-absorbing materials by using modified microcrystalline cellulose[C]//Gao J. Advanced Materials Research. Switzerland: Trans Tech Publications, 2011. [8] Khan F. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber[J]. Biomacromolecules, 2004, 5(3): 1078-1088. [9] Khan F. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation[J]. Macromolecular Bioscience, 2005, 5(1): 78-89. [10] Okieimen F E. Preparation, characterization, and properties of cellulose-polyacrylamide graft copolymers[J]. Journal of Applied Polymer Science, 2003, 89(4): 913-923. [11] Gupta K C, Khandekar K. Graft copolymerization of acrylamide onto cellulose in presence of comonomer using ceric ammonium nitrate as initiator[J]. Journal of Applied Polymer Science, 2006, 101(4): 2546-2558. [12] Gupta K C, Khandekar K. Temperature-responsive cellulose by ceric(IV)ion-initiated graft copolymerization of N-isopropylacrylamide[J]. Biomacromolecules, 2003, 4(3): 758-765. [13] Teramoto Y, Ama S, Higeshiro T. Cellulose acetate-graft-poly(hydroxyalkanoate)s: Synthesis and dependence of the thermal properties on copolymer composition[J]. Macromolecular Chemistry and Physics, 2004, 205(14): 1904-1915. [14] Hafrén J, Córdova A. Direct organocatalytic polymerization from cellulose fibers[J]. Macromolecular Rapid Communications, 2005, 26(2): 82-86. [15] Daly W H, Evenson T S, Iacono S T. Recent developments in cellulose grafting chemistry utilizing barton ester intermediates and nitroxide mediation[J]. Macromolecular Symposia, 2001, 174(1): 155-164. [16] Roy D, Guthrie J T, Perrier S. Graft polymerization: Grafting poly(styrene)from cellulose via reversible addition-fragmentation chain transfer(RAFT)polymerization[J]. Macromolecules, 2005, 38(25): 10363-10372. [17] Perrier S, Takolpuckdee P, Westwood J,et al. Versatile chain transfer agents for reversible addition fragmentation chain transfer(RAFT)polymerization to synthesize functional polymeric architectures[J]. Macromolecules, 2004, 37(8): 2709-2717. [18] Nyström D, Lindqvist J, Östmark E, et al. Superhydrophobic and self-cleaning bio-fiber Surfaces via ATRP and subsequent postfunctionalization[J]. Acs Applied Materials & Interfaces, 2009,1(4): 816-823. [19] 王璟, 周雪松, 肖惠宁. ATRP 在纤维素基材上接枝共聚的应用[J]. 高分子通报, 2011(2): 92-101.Wang J, Zhou X S, Xiao H N. The application of ATRP in cellulose graft polymerization[J]. Polymer Bulletin, 2011(2): 92-101. [20] 韩晶, 程发, 魏玉萍. 原子转移自由基聚合方法在纤维素及其衍生物改性方面的应用[J].高分子通报, 2010(1): 11-18.Han J, Chen F, Wei Y P. The application of atom transfer radical polymerization at the modification of cellulose and its derivatives[J]. Polymer Bulletin, 2010(1): 11-18. [21] Carlmark A, Malmstr O E. Atom transfer radical polymerization from cellulose fibers at ambient temperature[J]. Journal of the American Chemical Society, 2002, 124(6): 900-901. [22] Hansson S, Östmark E, Carlmark A,et al. ARGET ATRP for versatile grafting of cellulose using various monomers[J]. Acs Applied Materials & Interfaces, 2009, 1(11): 2651-2659. [23] Wang J S, Matyjaszewski K. Controlled/ “living” radical polymerization: Atom transfer radical polymerization in the presence of transition-metal complexes[J]. Journal of the American Chemical Society, 1995, 117(20): 5614-5615. [24] Jakubowski W, Min K, Matyjaszewski K. Activators regenerated by electron transfer for atom transfer radical polymerization of styrene[J]. Macromolecules, 2006, 39(1): 39-45. [25] 李强, 张丽芬, 柏良久, 等. 原子转移自由基聚合的最新研究进展[J]. 化学进展, 2010, 22(11): 2079-2088.Li Q, Zhang L F, Bo L J, et al. Atom transfer radical polymerization[J]. Progress in Chemistry, 2010, 22(11): 2079-2088. [26] Von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerizations from surfaces[J]. Journal of the American Chemical Society, 2001, 123(31): 7497-7505. [27] Zheng Y Q, Deng S B, Li N, et al. Functionalized cotton via surface-initiated atom transfer radical polymerization for enhanced sorption of Cu(Ⅱ)and Pb(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 192(3): 1401-1408. |