短期氮添加对杨树人工林表层土壤 可溶性有机碳的影响

葛之葳,彭塞,许凯,徐钰,于水强,阮宏华,徐长柏,曹国华

南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 23-27.

PDF(1745079 KB)
PDF(1745079 KB)
南京林业大学学报(自然科学版) ›› 2014, Vol. 38 ›› Issue (06) : 23-27. DOI: 10.3969/j.issn.1000-2006.2014.06.005
专题报道

短期氮添加对杨树人工林表层土壤 可溶性有机碳的影响

  • 葛之葳1,彭 塞1,许 凯1,徐 钰1,于水强1,阮宏华1*,徐长柏2,曹国华2
作者信息 +

Effects of short term nitrogen addition on dissolved organic carbon in topsoil of poplar plantation

  • GE Zhiwei1, PENG Sai1, XU Kai1, XU Yu1, YU Shuiqiang1, RUAN Honghua1*, XU Changbai2, CAO Guohua2
Author information +
文章历史 +

摘要

在江苏省北部杨树人工林集中分布区开展短期氮添加实验,以研究表层土壤(0~10 cm)可溶性有机碳的响应规律。结果显示:杨树人工林表层土壤可溶性有机碳随着氮添加浓度上升呈现增加趋势,林龄间差异逐渐减小; 对表层土壤可溶性有机碳影响因子分析发现,短期氮添加过程中土壤微生物生物量碳与土壤可溶性有机碳动态的相关性最大,与相对于凋落物量和细根生物量没有明显相关关系,说明短期外源氮素输入会导致土壤微生物生物量的增加,从而引起作为微生物代谢产物的土壤可溶性有机碳浓度的上升。

Abstract

Short-term nitrogen addition experiment was conducted to examine the response of topsoil(0-10 cm)dissolved organic carbon(DOC)in northern Jiangsu province, the concentrated distribution area of poplar plantation. The results showed DOC increasing was observed in topsoil of poplar plantation along with the increasing of nitrogen addition concentration and the variation caused by ages was reduced; significant positive linear regression correlation was found between soil microbial biomass carbon(SMBC)and DOC during the analysis of impact factors in topsoil of nitrogen addition experiment, but did not exist with the amount of litter or fine root biomass.

引用本文

导出引用
葛之葳,彭塞,许凯,徐钰,于水强,阮宏华,徐长柏,曹国华. 短期氮添加对杨树人工林表层土壤 可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版). 2014, 38(06): 23-27 https://doi.org/10.3969/j.issn.1000-2006.2014.06.005
GE Zhiwei, PENG Sai, XU Kai, XU Yu, YU Shuiqiang, RUAN Honghua, XU Changbai, CAO Guohua. Effects of short term nitrogen addition on dissolved organic carbon in topsoil of poplar plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2014, 38(06): 23-27 https://doi.org/10.3969/j.issn.1000-2006.2014.06.005
中图分类号: S714.2   

参考文献

[1] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?[J] Biogeochemistry, 1991,13(2): 87-115.
[2] Galloway J N, William H Schlesinger H L, Anthony Michaels J L S. Nitrogen fixation: Anthropogenic enhancement-environmental response[J]. Global Biogeochemical Cycles, 1995,9(2): 235-252.
[3] Lu X, Mo J, Dong S. Effects of nitrogen deposition on forest biodiversity[J]. Acta Ecologica Sinica, 2008, 28(11): 5532-5548.
[4] Liao Y C, Fan H B, Li Y Y, et al. Effects of simulated nitrogen deposition on growth and photosynthesis of 1-year-old Chinese fir(Cunninghamia lanceolata)seedlings[J]. Acta Ecologica Sinica, 2010,30(3): 150-154.
[5] Malhi Y, Grace J. Tropical forests and atmospheric carbon dioxide[J]. Trends in Ecology & Evolution, 2000,15(8): 332-337.
[6] Lal R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005,220(1): 242-258.
[7] Lee E W S, Hau B C H, Corlett R T. Natural regeneration in exotic tree plantations in Hong Kong, China[J]. Forest Ecology and Management, 2005,212(1-2): 358-366.
[8] de Blécourt M, Brumme R, Xu J C, et al. Soil carbon stocks decrease following conversion of secondary forests to rubber(Hevea brasiliensis)plantations[J]. PloS ONE, 2013,8(7): e69357.
[9] Asaye Z, Zewdie S. Fine root dynamics and soil carbon accretion under thinned and un-thinned Cupressus lusitanica stands in, Southern Ethiopia[J]. Plant and Soil, 2012,366(1): 261-271.
[10] Forrester D I, Pares A, O'Hara C, et al. Soil organic carbon is increased in mixed-species plantations of eucalyptus and nitrogen-fixing acacia[J]. Ecosystems, 2012, 16(1): 123-132.
[11] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: a review[J]. Soil Science, 2000,165(4): 277-304.
[12] 王明慧, 王国兵, 阮宏华, 等. 苏北沿海不同土地利用方式土壤水溶性有机碳含量特征[J]. 生态学杂志, 2012, 31(5): 1165-1170. Wang M H, Wang G B, Ruan H H, et al. Characteristics of soil water-soluble organic carbon under four different land use patterns in coastal area of northern Jiangsu[J].Chinese Journal of Ecology, 2012,31(5): 1165-1170.
[13] Liu J X, Zhou G Y, Zhang D Q, et al. Carbon dynamics in subtropical forest soil: effects of atmospheric carbon dioxide enrichment and nitrogen addition[J]. Journal of Soils and Sediments, 2010,10(4): 730-738.
[14] Lu M, Zhou X H, Luo Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2011, 140(1-2):234-244.
[15] Zhang J S, Guo J F, Chen G S, et al. Concentrations and seasonal dynamics of dissolved organic carbon in forest floors of two plantations(Castanopsis kawakamii and Cunninghamia lanceolata)in Subtropical China[J]. Journal of Forestry Research, 2005,16(3): 205-208.
[16] Campbell C A, Biederbeck V O, Wen G, et al. Seasonal trends in selected soil biochemical attributes: Effect of crop rotation in the semiarid prairie[J]. Canadian Journal of Soil Science, 1999,79(1): 73-84.
[17] Zeglin L H, Stursova M, Sinsabaugh R L, et al. Microbial responses to nitrogen addition in three contrasting grassland ecosystems[J]. Oecologia, 2007,154(2): 349-59.
[18] Horswill P, O'Sullivan O, Phoenix G K, et al. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition[J]. Environmental Pollution, 2008,155(2): 336-349.
[19] Filep T, Rékási M. Factors controlling dissolved organic carbon(DOC), dissolved organic nitrogen(DON)and DOC/DON ratio in arable soils based on a dataset from Hungary[J]. Geoderma, 2011, 162(3): 312-318.
[20] Li W, Yang G, Chen H, et al. Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain[J]. Acta Ecologica Sinica, 2013,33(5): 266-271.
[21] 谢涛, 郑阿宝, 王国兵, 等. 苏北不同林龄杨树林土壤活性碳的季节变化[J]. 生态学杂志, 2012,31(5): 1171-1178. Xie T, Zheng A B, Wang G B, et al. Seasonal variation patterns of soil labile organic carbon in poplar plantations with different ages in northern Jiangsu[J].Chinese Journal of Ecology, 2012,31(5): 1171-1178.
[22] Yano Y, McDowell W, Aber J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology and Biochemistry, 2000,32(11): 1743-1751.
[23] Lu X K, Mo J M, Gundersern P, et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China[J]. Pedosphere, 2009,19(2): 189-198.
[24] Mc Dowell W H, Magill A H, Aitkenhead-Peterson J A, et al. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution[J]. Forest Ecology and Management, 2004, 196(1): 29-41.
[25] Rappe-George M, Gärdenäs A, Kleja D. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil[J]. Biogeosciences, 2013,10(1): 1365-1377.
[26] Guggenberger G, Zech W, Schulten H R. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions[J]. Organic Geochemistry, 1994,21(1): 51-66.
[27] Sinsabaugh R L, Zak D R, Gallo M, et al. Nitrogen deposition and dissolved organic carbon production in northern temperate forests[J]. Soil Biology and Biochemistry, 2004,36(9): 1509-1515.
[28] Strand A E, Pritchard S G, McCormack M L, et al. Irreconcilable differences: fine-root life spans and soil carbon persistence[J]. Science, 2008,319(5862): 456-458.

基金

收稿日期:2014-06-29 修回日期:2014-09-30
基金项目:国家重点基础研究发展计划(2012CB416904); 江苏省自然科学基金青年基金项目(BK20130973); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:葛之葳,讲师,博士。*通信作者:阮宏华,教授。E-mail: hhruan@njfu.edu.cn。
引文格式:葛之葳,彭塞,许凯,等. 短期氮添加对杨树人工林表层土壤可溶性有机碳的影响[J]. 南京林业大学学报:自然科学版,2014,38(6):23-27.

PDF(1745079 KB)

Accesses

Citation

Detail

段落导航
相关文章

/