南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (04): 25-31.doi: 10.3969/j.issn.1000-2006.201712010
魏 强, 高志鹏,郭 琳, 胡 佩, 夏苏娟, 丁雨龙
出版日期:
2018-07-27
发布日期:
2018-07-27
基金资助:
WEI Qiang,GAO Zhipeng, GUO Lin,HU Pei, XIA Sujuan, DING Yulong
Online:
2018-07-27
Published:
2018-07-27
摘要: 【目的】阐明矢竹矮秆稳定变异体——平安竹纤维形态学特征并初步阐释其变异机制。【方法】利用石蜡切片及数量统计学方法进行显微观测与数据分析; qRT-PCR分析基因相对表达量; UPLC/GC-MS法测定赤霉素含量。【结果】平安竹竹秆不同部位纤维长度、长宽比及壁腔比显著小于矢竹; 但其宽度与腔径值显著大于矢竹; 而其不同部位纤维壁厚值虽小于矢竹,但差异不显著。平安竹地下茎纤维在长度、长宽比、壁厚及壁腔比上显著小于矢竹,但其宽度与腔径值则显著大于矢竹。形态解剖学分析显示,平安竹地下茎纤维细胞形态变异出现于节间活跃生长阶段。赤霉素及细胞壁与细胞骨架相关基因表达量分析结果表明,赤霉素信号途径在平安竹节间生长起始阶段即受到抑制; 而其细胞壁与细胞骨架相关下游功能基因则在其伸长早期与活跃阶段显著低于矢竹; 赤霉素含量分析也证实各赤霉素含量早在平安竹节间伸长起始阶段就低于矢竹。【结论】赤霉素信号途径受抑导致其下游细胞壁与细胞骨架组织相关基因下调是最终导致平安竹纤维细胞生长异常的原因之一。
中图分类号:
魏强,高志鹏,郭琳,等. 平安竹纤维形态变异特征及其成因分析[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 25-31.
WEI Qiang,GAO Zhipeng, GUO Lin,HU Pei, XIA Sujuan, DING Yulong. Characterization of fiber morphological variation of Pseudosasa japonica var. tsutsumiana and the underlying mechanism[J].Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(04): 25-31.DOI: 10.3969/j.issn.1000-2006.201712010.
[1] RAI V, GHOSH J S, PAL A, et al. Identification of genes involved in bamboo fiber development[J].Gene, 2011, 478(1/2):19-27.
[2] 甘小洪.毛竹茎杆纤维细胞的发育生物学研究[D].南京:南京林业大学,2005. GAN X H.Study on the developmental biology of fiber in Phyllostachys edulis culms[D]. Nanjing: Nanjing Forestry University, 2005. [3] 甘小洪,陈凤,林树燕,等.慈竹不同变异类型的纤维形态研究[J].南京林业大学学报(自然科学版), 2013, 37(4): 99-104.DOI: 1000-2006(2013)04-0099-06. GAN X H, CHEN F, LIN S Y, et al. Fiber morphology of different variation types of Neosinocalamus affinis(Rendle)Keng f. [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(4): 99-104. [4] 王曙光,普晓兰,丁雨龙,等.云南箭竹纤维形态变异规律[J].浙江林学院学报,2009,26(4):528-532. WANG S G, PU X L, DING Y L, et al. Morphological differences of Fargesia yunnanensis fibers [J]. Journal of Zhejiang Forestry College,2009, 26(4): 528-532. [5] 普晓兰, 杜凡. 巨龙竹纤维形态及变异规律的研究[J]. 云南林业科技, 2003(1):1-4. DOI: 10.16473/ j. cnki. xblykx1972.2003.01.001. PU X L, DU F. Study of fiber morphology and its variation law of Dendrocalamus sinicus[J]. Yunnan Forestry Science and Technology, 2003(1): 1-4. [6] 马灵飞,朱丽青.浙江省6种丛生竹纤维形态及其组织比量的研究[J].浙江林学院学报,1990, 7(1): 66-71. MA L F, ZHU L Q. Fiber forms and tissue percentage of six species of sympodial bamboos in Zhejiang Province[J]. Journal of Zhejiang Forestry College, 1990, 7(1): 66-71. [7] 贺新强, 王幼群, 胡玉熹, 等. 毛竹茎纤维次生壁形成过程的超微结构观察[J]. 植物学报, 2000,42(10):1003-1008. HE X Q, WANG Y Q, HU Y X, et al. Ultrastructural study of secondary wall formation in the stem fiber of Phyllostachys pubescens[J]. Acta Botanica Sinica, 2000, 42(10): 1003-1008. [8] WEI Q, JIAO C, GUO L, et al. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots[J]. New Phytologist, 2017, 214(1): 81-96. DOI:10.1111/nph.14284. [9] 何奇江, 童晓青, 叶华琳, 等. 辣韭矢竹的出笋及幼竹生长节律[J]. 林业科学,2007, 43(6): 143-145. DOI: 1001-7488(2007)06-0143-03. HE Q J, TONG X Q, YE H L, et al. Shooting and growth rhythm of Pseudosasa japonica var. tsutsumian [J]. Scientia Silvae Sinicae, 2007, 43(6): 143-145. [10] 林树燕, 丁雨龙. 平安竹抗旱生理指标的测定[J]. 林业科技开发, 2006, 20(1): 40-41. DOI: 10.3969/j.issn.1000-8101.2006.01.013. LIN S Y, DING Y L. The physiological responds to drought stress of Pseudosasa japonica [J]. China Forestry Science and Technology, 2006, 20(1): 40-41. [11] 王光萍, 黄敏仁. 日本平安竹的组织培养及快速繁殖[J]. 植物生理学通讯, 2002, 38(1): 47. WANG G P, HUANG M R. Tissue culture and rapid propagation of Pseudosasa japonica cv. tsutsumiana [J]. Plant Physiology Communications, 2002, 38(1): 47. [12] 林树燕, 丁雨龙. 电导法对7种观赏竹的抗寒性测定[J]. 西北林学院学报, 2008, 23(1): 34-38. DOI: 1001-7461(2008)01-0034-05. LIN S Y, DING Y L. Establishment of cold resistance of 7 ornamental bamboo species by electric conductivity [J]. Journal of Northwest Forestry University, 2008, 23(1): 34-38. [13] WEI Q, JIAO C, DING Y L, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo [J]. Tree Physiology, 2017, 38(4):641-654. DOI:10.1093/treephys/tpx129. [14] 魏强, 丁雨龙. 矢竹地下茎转录组测序及节间生长相关基因表达分析[J]. 南京林业大学学报(自然科学版), 2017, 41(5):42-48. DOI: 1000-2006(2017)05-0042-07. WEI Q, DING Y L. Transcriptome sequencing, de novo assembly and expression analysis of several genes related to internode development in Pseudosasa japonica [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(5):42-48. [15] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods, 2001, 25(4):402-408. DOI: 10.1006/meth.2001.1262. [16] ARITE T, IWATA H, OHSHIMA K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant Journal, 2007, 51:1019-1029. DOI:10.1111/j.1365-313X.2007.03210.x. [17] BUSOV V B, BRUNNER A M, STRAUSS SH. Genes for control of plant stature and form[J]. New Phytologist, 2008, 177: 589-607. DOI: 10.1111/j.1469-8137.2007.02324.x. [18] ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiology, 2005, 46: 79-86. DOI: 10.1093/pcp/pci022. [19] LUAN W, LIU Y, ZHANG F, et al. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth[J]. Plant Biotechnology Journal, 2011, 9: 513-524. DOI: 10.1111/j.1467-7652.2010.00570.x. [20] THOMAS S G, SUN T P. Update on gibberellin signaling. a tale of the tall and the short[J]. Plant Physiology, 2004, 135: 668-676. DOI: 10.1104/pp.104.040279. [21] YAMAMURO C, IHARA Y, WU X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. The Plant Cell, 2000, 12: 1591-1606. [22] GRIFFITHS J, MURASE K, RIEU I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 2006, 18(12): 3399-3414. DOI: 10.1105/tpc.106.047415. [23] WILLIGE B C, GHOSH S, NILL C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GAINSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. The Plant Cell, 2006, 19: 1209-1220. DOI: 10.1105/tpc.107.051441. [24] LANGE T, KAPPLER J, FISCHER A, et al. Gibberellin biosynthesis in developing pumpkin seedlings[J]. Plant Physiology, 2005, 139(1): 213-223. DOI: 10.1104/pp.105.064162. [25] PHILLIPS A L, WARD D A, UKNES S, et al. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis[J]. Plant Physiology, 1995, 108(3): 1049-1057. [26] ZHANG Z L, OGAWA M, FLEET C M, et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2011, 108(5): 2160-2165. DOI: 10.1073/pnas.1012232108. [27] RICHMOND T. Higher plant cellulose synthases[J]. Genome Biology, 2000, 1(4): 1-5. DOI: 10.1186/gb-2000-1-4-reviews3001. [28] SCHEIBLE W R, PAULY M. Glycosyl transferases and cell wall biosynthesis: novel players and insights[J]. Current Opinion in Plant Biology, 2004, 7(3): 285-295. DOI: 10.1016/j.pbi.2004.03.006. [29]CHO H T, KENDE H. Expression of expansin genes is correlated with growth in deepwater rice[J]. The Plant Cell, 1997, 9(9): 1661-1671. DOI: 10.1105/tpc.9.9.1661. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||