南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (2): 133-140.doi: 10.3969/j.issn.1000-2006.201812016
收稿日期:
2018-12-08
修回日期:
2019-04-20
出版日期:
2020-03-30
发布日期:
2020-04-01
通讯作者:
金光泽
基金资助:
HAN Yuna1(), ZHANG Yu1, JIN Guangze1,2,*()
Received:
2018-12-08
Revised:
2019-04-20
Online:
2020-03-30
Published:
2020-04-01
Contact:
JIN Guangze
摘要:
【目的】含水率和密度是木质残体重要的物理性质。为了更合理地评估森林生态系统养分含量和生产力变化,对阔叶红松林木质残体的含水率和密度进行研究。【方法】以东北典型阔叶红松林中主要树种红松、臭冷杉、枫桦、槭树、椴树、水曲柳、榆树的木质残体为研究对象, 对5个腐烂等级(Ⅰ—Ⅴ)下的3个径级(ⅰ—ⅲ)进行取样, 分析腐烂等级、径级、树种、结构组分(边材、心材)对木质残体含水率、密度的影响。【结果】随腐烂等级的增加, 木质残体含水率显著增加, 密度显著降低; 除腐烂等级Ⅲ和总体木质残体边材密度显著高于心材外, 其余腐烂等级木质残体含水率、密度在边材与心材之间均无显著差异; 除腐烂等级Ⅰ的木质残体心材含水率外, 其余腐烂等级木质残体边材、心材的含水率和密度在部分树种之间均有显著差异。木质残体含水率、密度在径级间均无显著差异; 径级ⅰ的木质残体边材、心材含水率在部分树种间有显著差异, 径级ⅰ、ⅲ的木质残体边材、心材的密度在部分树种间均有显著差异。【结论】受不同因素的影响,阔叶红松林木质残体的含水率、密度有不同的变化规律, 且腐烂等级以及树种是导致木质残体分解过程中引起含水率、密度显著变化的重要因素。
中图分类号:
韩玉娜,张瑜,金光泽. 腐烂等级、径级对阔叶红松林木质残体含水率和密度的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 133-140.
HAN Yuna, ZHANG Yu, JIN Guangze. Effects of decay class and diameter class on moisture content and wood density in a typical mixed broadleaf-Korean pine forest[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 133-140.DOI: 10.3969/j.issn.1000-2006.201812016.
表1
木质残体的含水率、木材密度与腐烂等级、径级的关系"
自变量 independent variable | 边材含水率 moisture content of sapwood | 边材密度 density of sapwood | 心材含水率 moisture content of heartwood | 心材密度 density of heartwood | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回归系数 RC | P | 回归系数 RC | P | 回归系数 RC | P | 回归系数 RC | P | |||||||
腐烂等级 decay class | 7.468 | 0.003 | -0.062 | < 0.001 | 8.987 | < 0.001 | -0.068 | < 0.001 | ||||||
径级 diameter class | 1.062 | 0.742 | -0.036 | > 0.05 | 2.761 | > 0.05 | -0.020 | > 0.05 | ||||||
腐烂等级×径级 decay class×diameter class | 0.855 | 0.466 | 0.006 | > 0.05 | -0.006 | > 0.05 | 0.007 | > 0.05 | ||||||
决定系数 R2 | 0.268 | 0.187 | 0.239 | 0.230 |
表2
影响木质残体含水率和木材密度因子的方差分析"
因子 factor | 含水率moisture content | 木材密度wood density | ||
---|---|---|---|---|
F | P | F | P | |
树种 tree species | 15.729 | <0.05 | 15.713 | <0.001 |
腐烂等级 decay class | 61.391 | <0.001 | 26.349 | <0.001 |
径级 diameter class | 4.020 | 0.019 | 1.135 | >0.05 |
结构组分 structural component | 0.913 | <0.05 | 6.948 | 0.009 |
树种×腐烂等级 species×decay class | 3.908 | <0.001 | 3.686 | <0.001 |
树种×径级 species×diameter class | 4.783 | <0.001 | 3.332 | <0.001 |
腐烂等级×径级 decay class×diameter class | 0.442 | >0.05 | 3.725 | 0.006 |
树种×结构组分 species×structural component | 1.400 | >0.05 | 0.663 | >0.05 |
腐烂等级×结构组分 decay class ×structural component | 0.298 | >0.05 | 1.463 | >0.05 |
径级×结构组分 diameter class×structural component | 0.056 | >0.05 | 1.207 | >0.05 |
树种×腐烂等级×径级 species×decay class×diameter class | 2.223 | 0.001 | 2.690 | <0.001 |
树种×腐烂等级×结构组分 species×decay class ×structural component | 0.557 | >0.05 | 0.564 | >0.05 |
树种×径级×结构组分 species×diameter class×structural component | 0.562 | >0.05 | 0.486 | >0.05 |
腐烂等级×径级×结构组分 decay class×diameter class×structural component | 0.319 | >0.05 | 0.795 | >0.05 |
树种×腐烂等级×径级×结构组分 species×decay class×diameter class×structural component | 0.581 | >0.05 | 0.414 | >0.05 |
Table 3
Moisture content of woody debris for main tree species at different decay classes and diameter classes%"
结构组分 structural component | 因子 factor | 树种 tree species | |||||||
---|---|---|---|---|---|---|---|---|---|
Pk | An | Bc | Acer | Tili | Fm | Ulmu | |||
边材 sapwood | 腐烂等级 decay class | Ⅰ | 14.7±1.3 bB | 41.6±7.1 a | 37.1±4.1 aB | 31.6±3.1 aB | 32.7±3.3 aB | 41.1±2.9 a | 27.8±4.9 b |
Ⅱ | 34.3±7.7 cAB | 51.0±7.6 ac | 59.3±7.2 abA | 61.7±5.3 aA | 44.7±3.4 acB | 46.9±1.7 ac | 36.5±4.7 bc | ||
Ⅲ | 46.9±6.7 abA | 56.5±8.4 ab | 64.8±6.4 aA | 53.4±6.2 abA | 65.5±4.2 aA | 47.0±6.5 ab | 31.4±4.3 b | ||
径级 diameter class | ⅰ | 44.2±6.5 ac | 27.5±5.3 bcB | 58.4±6.3 a | 49.4±6.6 ab | 46.1±6.0 ac | 48.9±2.9 ab | 21.3±4.0 c | |
ⅱ | 43.7±7.4 | 56.6±6.9 A | 50.1±6.1 | 48.7±6.7 | 47.8±4.4 | 44.8±3.9 | 36.8±3.7 | ||
ⅲ | 55.3±7.3 | 64.9±5.2 A | 51.8±8.5 | 46.9±6.2 | 50.0±8.0 | 40.4±2.6 | 37.6±4.5 | ||
心材 heartwood | 腐烂等级 decay class | Ⅰ | 34.4±10.5 | 37.1±7.0 | 41.9±3.9 B | 29.9±29.9 B | 32.7±4.2 C | 39.3±3.1 | 25.1±4.8 |
Ⅱ | 33.7±7.7 b | 40.8±6.3 ab | 60.2±5.7 aA | 58.5±5.7 aA | 55.0±5.5 abB | 48.7±2.1 ab | 33.8±6.3 b | ||
Ⅲ | 58.4±7.8 a | 57.2±6.0 a | 62.8±5.7 aA | 56.1±6.8 aA | 72.7±2.9 aA | 49.7±7.1 ab | 28.0±5.3 b | ||
径级 diameter class | ⅰ | 34.2±6.8 ab | 33.3±5.7 ab | 55.5±6.6 a | 52.2±7.5 a | 53.2±7.6 a | 48.9±3.4 a | 18.4±3.9 bB | |
ⅱ | 47.3±7.8 | 47.9±7.9 | 55.6±5.5 | 48.2±5.1 | 52.7±5.1 | 41.1±4.1 | 30.2±4.9 AB | ||
ⅲ | 60.1±7.1 | 55.0±4.9 | 53.4±5.9 | 43.5±6.8 | 54.5±9.0 | 47.3±3.7 | 38.3±5.6 A |
表4
不同腐烂等级、径级下木质残体主要树种的木材密度"
结构组分 structural component | 因子 factor | 树种 tree species | |||||||
---|---|---|---|---|---|---|---|---|---|
Pk | An | Bc | Acer | Tili | Fm | Ulmu | |||
边材 sapwood | 腐烂等级 decay class | Ⅰ | 0.39±0.02 abA | 0.29±0.02 b | 0.37±0.05 b | 0.43±0.02 abA | 0.31±0.03 b | 0.39±0.05 ab | 0.55±0.08 a |
Ⅱ | 0.35±0.03 abA | 0.29±0.03 ab | 0.29±0.05 ab | 0.23±0.03 bB | 0.32±0.05 ab | 0.43±0.04 a | 0.42±0.03 a | ||
Ⅲ | 0.23±0.04 bB | 0.28±0.03 ab | 0.25±0.03 b | 0.35±0.03 abA | 0.29±0.04 ab | 0.35±0.05 ab | 0.42±0.02 aα | ||
径级 diameter class | ⅰ | 0.31±0.03 bA | 0.31±0.02 b | 0.32±0.04 b | 0.34±0.03 ab | 0.34±0.03 ab | 0.39±0.04 ab | 0.50±0.05 a | |
ⅱ | 0.29±0.03 AB | 0.28±0.03 | 0.28±0.05 | 0.32±0.03 | 0.34±0.03 | 0.41±0.05 | 0.42±0.04 | ||
ⅲ | 0.18±0.03 cB | 0.26±0.02 bc | 0.31±0.05 ac | 0.37±0.05 ab | 0.22±0.06 bc | 0.38±0.04 ab | 0.47±0.07 a | ||
心材 heartwood | 腐烂等级 decay class | Ⅰ | 0.29±0.05 bA | 0.32±0.04 ab | 0.39±0.05 abA | 0.39±0.03 ab | 0.31±0.02 bA | 0.40±0.04 ab | 0.51±0.06 aA |
Ⅱ | 0.36±0.03 abA | 0.27±0.01 ab | 0.29±0.04 abAB | 0.27±0.03 ab | 0.26±0.05b AB | 0.40±0.03 a | 0.40±0.03 abAB | ||
Ⅲ | 0.15±0.02 bB | 0.28±0.02 ab | 0.22±0.03 abB | 0.32±0.04 a | 0.20±0.02 abB | 0.27±0.05 ab | 0.27±0.04 abBβ | ||
径级 diameter class | ⅰ | 0.31±0.03 abA | 0.26±0.03 ab | 0.30±0.04 ab | 0.27±0.03 abB | 0.22±0.02 bAB | 0.40±0.04 a | 0.44±0.06 a | |
ⅱ | 0.25±0.03 AB | 0.31±0.03 | 0.27±0.05 | 0.30±0.03 AB | 0.31±0.03 A | 0.36±0.03 | 0.40±0.02 | ||
ⅲ | 0.17±0.03 cB | 0.30±0.01 ac | 0.32±0.05 ac | 0.40±0.04 aA | 0.20±0.04 bcB | 0.35±0.05 ab | 0.350.07 ac |
[1] |
CORNELISSEN J H C, SASS-KLAASSEN U, POORTER L, et al. Controls on coarse wood decay in temperate tree species:birth of the LOGLIFE experiment[J]. Ambio, 2012, 41(S3):231-245.DOI: 10.1007/s13280-012-0304-3.
doi: 10.1007/s13280-012-0304-3 |
[2] |
RINTA-KANTO J M, SINKKO H, RAJALA T, et al. Natural decay process affects the abundance and community structure of bacteria and archaea inPicea abies logs[J]. FEMS Microbiol Ecol, 2016, 92(7):fiw087.DOI: 10.1093/femsec/fiw087.
doi: 10.1093/femsec/fiw087 |
[3] |
HOPPE B, KRÜGER D, KAHL T, et al. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies[J]. Sci Rep, 2015, 5:9456.DOI: 10.1038/srep09456.
doi: 10.1038/srep09456 |
[4] |
LODGE D, WINTER D, GONZÁLEZ G, et al. Effects of hurricane-felled tree trunks on soil carbon,nitrogen,microbial biomass,and root length in a wet tropical forest[J]. Forests, 2016, 7(12):264.DOI: 10.3390/f7110264.
doi: 10.3390/f7110264 |
[5] | BOND-LAMBERTY B, WANG C, GOWER S T. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D23):1-10. DOI: 10.1029/2001jd000839. |
[6] |
ZHOU L, DAI L M, GU H Y, et al. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem[J]. J For Res, 2007, 18(1):48-54.DOI: 10.1007/s11676-007-0009-9.
doi: 10.1007/s11676-007-0009-9 |
[7] |
BARBOSA R I, DE CASTILHO C V, DE OLIVEIRA PERDIZ R, et al. Decomposition rates of coarse woody debris in undisturbed Amazonian seasonally flooded and unflooded forests in the Rio Negro-Rio Branco Basin in Roraima,Brazil[J]. For Ecol Manag, 2017, 397:1-9. DOI: 10.1016/j.foreco.2017.04.026.
doi: 10.1016/j.foreco.2017.04.026 |
[8] | HARMON M E, FRANKLIN J F, SWANSON F J, et al. Ecology of coarse woody debris in temperate ecosystems[J]. Advances in Ecological Research, 2004, 34:59-234. DOI: 10.1016/s0065-2504(08)60121-x. |
[9] |
HARMON M E, SEXTON J. Water balance of conifer logs in early stages of decomposition[J]. Plant and Soil, 1995, 172:141-152.DOI: 10.1007/bf00020868.
doi: 10.1007/BF00020868 |
[10] |
PALETTO A, TOSI V. Deadwood density variation with decay class in seven tree species of the Italian Alps[J]. Scand J For Res, 2010, 25(2):164-173.DOI: 10.1080/02827581003730773.
doi: 10.1080/02827581003730773 |
[11] | KRAIGHER H, JURC D, KALAN P, et al. Beech coarse woody debris characteristics in two virgin forest reserves in Southern Slovenia[J]. Zbornik Gozdarstva in Lesarstva, 2002, 69(69):9l-134.DOI: 10.1007/10713485_596. |
[12] |
GRAHAM R L, CROMACK K. Mass,nutrient content,and decay rate of dead boles in rain forests of Olympic National Park[J]. Can J For Res, 1982, 12(3):511-521.DOI: 10.1139/x82-080.
doi: 10.1139/x82-080 |
[13] |
ABBOTT D T, CROSSLEY D A JR. Woody litter decomposition following clear-cutting[J]. Ecology, 1982, 63(1):35-42.DOI: 10.2307/1937028.
doi: 10.2307/1937028 |
[14] |
SAKAI Y, UGAWA S, ISHIZUKA S, et al. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica[J]. Soil Sci Plant Nutr, 2012, 58(4):526-537.DOI: 10.1080/00380768.2012.710526.
doi: 10.1080/00380768.2012.710526 |
[15] | KRAMER P J, KOZLOWSHI T T. Physiology of trees[M]. New York: mcGraw-Hill Publication in the Botanical Sciences, 1960. DOI: p.2307/379782. |
[16] |
OSUNKOYA O O, SHENG T K, MAHMUD N A, et al. Variation in wood density,wood water content,stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island[J]. Austral Ecol, 2007, 32(2):191-201.DOI: 10.1111/j.1442-9993.2007.01678.x.
doi: 10.1111/aec.2007.32.issue-2 |
[17] | HARMON M E, WOODALL C W, FASTH B, et al. Woody detritus density and density reduction factors for tree species in the United States:a synreport[R]. U.S. Department of Agriculture,Forest Service,Northern Research Station: General Technical Report NRS-29,2008. DOI: 10.2737/nrs-gtr-29. |
[18] | 刘妍妍, 金光泽. 小兴安岭阔叶红松林粗木质残体基础特征[J]. 林业科学, 2010,46(4):8-14. |
LIU Y Y, JIN G Z. Character of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J]. Sci Silvae Sin, 2010,46(4):8-14. | |
[19] | 代力民, 徐振邦, 陈华. 阔叶红松林倒木贮量的变化规律[J]. 生态学报, 2000,20(3):412-416. |
DAI L M, XU Z B, CHEN H. Storage dynamics of fallen trees in the broad-leaved and Korean pine mixed forest[J]. Acta Ecol Sin, 2000,20(3):412-416.DOI: 10.3321/j.issn:1000-0933.2000.03.011. | |
[20] | 陈镜园, 毕连柱, 宋国华, 等. 小兴安岭丰林阔叶红松林木质物残体的贮量特征分析[J]. 南京林业大学学报(自然科学版), 2016,40(6):76-84. |
CHEN J Y, BI L Z, SONG G H, et al. Characteristics of woody debris in mixed broadleaved-Korean pine forest plot in Fenglin National Nature Reserve in Xiao Hinggan Mountains,China[J]. J Nanjing For Univ(Nat Sci Ed), 2016,40(6):76-84.DOI: 10.3969/j.issn.1000-2006.2016.06.012. | |
[21] | 刘妍妍, 金光泽. 小兴安岭阔叶红松林粗木质残体空间分布的点格局分析[J]. 生态学报, 2010,30(22):6072-6081. |
LIU Y Y, JIN G Z. Spatial point pattern analysis for coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains,China[J]. Acta Ecol Sin, 2010,30(22):6072-6081. | |
[22] |
张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016,40(12):1276-1288.
doi: 10.17521/cjpe.2016.0187 |
ZHANG Y, JIN G Z. Effects of decay classes and diameter classes on physico-chemical properties of Pinus koraiensis login a typical mixed broadleaved-Korean pine forest [J]. Chin J Plant Ecol, 2016,40(12):1276-1288.DOI: 10.17521/cjpe.2016.0187. | |
[23] | 刘妍妍, 金光泽, 黎如. 小兴安岭阔叶红松林粗木质残体的贮量特征[C]//经济发展方式转变与自主创新——第十二届中国科学技术协会年会论文集. 福州, 2010:1082-1089. |
LIU Y Y, JIN G Z, LI R. Storage characteristics of coarse woody debris in a mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains, China[C]// Transformation of economic development mode and independent innovation: proceedings of the 12th China Science and Technology Association Annual Meeting. Fuzhou, 2010:1082-1089. | |
[24] |
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012,20(4):470-481.
doi: 10.3724/SP.J.1003.2012.12233 |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,Northeast China [J]. Biodivers Sci, 2012,20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[25] | 闫恩荣, 王希华, 黄建军. 森林粗死木质残体的概念及其分类[J]. 生态学报, 2005,25(1):158-167. |
YAN E R, WANG X H, HUANG J J. Concept and classification of coarse woody debris in forest ecosystems[J]. Acta Ecol Sin, 2005,25(1):158-167.DOI: 10.3321/j.issn:1000-0933.2005.01.025. | |
[26] |
HARMON M E, FASTH B, WOODALL C W, et al. Carbon concentration of standing and downed woody detritus:effects of tree taxa,decay class,position,and tissue type[J]. For Ecol Manag, 2013, 291:259-267.DOI: 10.1016/j.foreco.2012.11.046.
doi: 10.1016/j.foreco.2012.11.046 |
[27] |
BÜTLER R, PATTY L, LE BAYON R C, et al. Log decay of Picea abies in the Swiss Jura Mountains of central Europe[J]. For Ecol Manag, 2007, 242(2/3):791-799.DOI: 10.1016/j.foreco.2007.02.017.
doi: 10.1016/j.foreco.2007.02.017 |
[28] | FISSORE C, JURGENSEN M F, PICKENS J, et al. Role of soil texture,clay mineralogy,location,and temperature in coarse wood decomposition:a mesocosm experiment[J]. Ecosphere, 2016, 7(11):1-13.DOI: 10.1002/ecs2.1605. |
[29] |
SONG Z W, DUNN C, LÜ X T, et al. Coarse woody decay rates vary by physical position in tropical seasonal rainforests of SW China[J]. For Ecol Manag, 2017, 385:206-213.DOI: 10.1016/j.foreco.2016.11.033.
doi: 10.1016/j.foreco.2016.11.033 |
[30] |
NOH N, YOON T, KIM R H, et al. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S.et Z.) forest[J]. Forests, 2017, 8(6):214.DOI: 10.3390/f8060214.
doi: 10.3390/f8060214 |
[31] |
PETRILLO M, CHERUBINI P, SARTORI G, et al. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting[J]. iForest, 2016, 9(1):154-164.DOI: 10.3832/ifor1591-008.
doi: 10.3832/ifor1591-008 |
[32] |
KÖSTER K, METSLAID M, ENGELHART J, et al. Dead wood basic density,and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests[J]. For Ecol Manag, 2015, 354:35-42.DOI: 10.1016/j.foreco.2015.06.039.
doi: 10.1016/j.foreco.2015.06.039 |
[33] |
BRIN A, BOUGET C, BRUSTEL H, et al. Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests[J]. J Insect Conserv, 2011, 15(5):653-669.DOI: 10.1007/s10841-010-9364-5.
doi: 10.1007/s10841-010-9364-5 |
[34] |
FEARNSIDE P M. Wood density for estimating forest biomass in Brazilian Amazonia[J]. For Ecol Manag, 1997, 90(1):59-87.DOI: 10.1016/s0378-1127(96)03840-6.
doi: 10.1016/S0378-1127(96)03840-6 |
[35] |
CHEN L X, XIANG W H, WU H L, et al. Tree growth traits and social status affect the wood density of pioneer species in secondary subtropical forest[J]. Ecol Evol, 2017, 7(14):5366-5377.DOI: 10.1002/ece3.3110.
doi: 10.1002/ece3.2017.7.issue-14 |
[36] |
HICKS W T, HARMON M E. Diffusion and seasonal dynamics of O2 in woody debris from the Pacific Northwest,USA[J]. Plant and Soil, 2002, 243(1):67-79.DOI: 10.1023/A:1019906101359.
doi: 10.1023/A:1019906101359 |
[37] |
MACKENSEN J, BAUHUS J. Density loss and respiration rates in coarse woody debris of Pinus radiata,Eucalyptus regnans and Eucalyptus maculata[J]. Soil Biol Biochem, 2003, 35(1):177-186.DOI: 10.1016/s0038-0717(02)00255-9.
doi: 10.1016/S0038-0717(02)00255-9 |
[1] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[2] | 宋泽君, 李培培, 袁斓方, 郭小兰, 王德炉. 土壤含水率对蓝莓叶片生理及果实品质的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 147-156. |
[3] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[4] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[5] | 王甜, 王雪峰, 刘嘉政. 基于RFE_RF算法的幼龄沉香叶片含水率预估模型[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 177-184. |
[6] | 王润松, 孙源, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根生物量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 123-129. |
[7] | 王路君, 蔡春菊, 唐晓鹿, 范少辉. 硬头黄竹地上生物量分配特征及模型构建[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 189-196. |
[8] | 周永晟, 徐子恒, 袁发银, 尚旭岚, 孙操稳, 方升佐. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 29-35. |
[9] | 魏玉龙, 张秋良. 兴安落叶松林缘天然更新与立地环境因子的相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 165-172. |
[10] | 朱越骅, 潘彪, 於朝广, 殷云龙, 张耀丽. ‘中山杉118’与落羽杉胸径生长及木材密度的比较研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 201-206. |
[11] | 许宝坤,许晓岗,李垚,李小东,陈水飞,丁晖,蒋晓辉,苟凌晨,方炎明. 黄山常绿阔叶林甜槠群落优势种种间关联分析[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 77-84. |
[12] | 张希金,冷寒冰,赵广琦,景军,涂爱翠,宋坤1,4*,达良俊1,3,4. 上海4种常见绿化树种地上生物量模型构建[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 141-146. |
[13] | 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 7-12. |
[14] | 王玉婷,徐华东,周涵婷,曹延珺,吉莉. 环境温度对活立木内部含水率变化的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 107-113. |
[15] | 欧晓岚,刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 80-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||