南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3): 95-104.doi: 10.3969/j.issn.1000-2006.201908022
宋娟1,徐国芳2,赵邢3,姚尧3,杨学祥3,唐荣林3,崔家旺1,陈凤毛1*,任嘉红2
收稿日期:
2019-08-15
修回日期:
2020-01-18
出版日期:
2020-05-30
发布日期:
2020-06-11
作者简介:
宋娟(基金资助:
SONG Juan1(), XU Guofang2, ZHAO Xing3, YAO Yao3, YANG Xuexiang3, TANG Ronglin3, CUI Jiawang1, CHEN Fengmao1(
), REN Jiahong2
Received:
2019-08-15
Revised:
2020-01-18
Online:
2020-05-30
Published:
2020-06-11
Contact:
CHEN Fengmao
摘要:
从枫香(Liquidambar formosana Hance)根际土壤中分离和鉴定有效解磷菌(PSB),并研究其在溶磷方面的应用。
采用形态学及生理生化特征、微生物鉴定系统(MIDI)、BIOLOG细菌鉴定和16SrDNA序列分析等方法鉴定解磷菌。应用离子发射光谱法测定各解磷菌菌株(JX7、JX18、JX21、WHP)处理下枫香叶片大量及微量元素的含量,鉴定PSB菌株对植物生长的影响。
解磷细菌菌株JX7鉴定为争论产碱菌(Variovorax paradoxus),JX18鉴定为蜡状芽孢杆菌(Bacillus cereus),WH10鉴定为蕈状芽孢杆菌(Bacillus mycoides),JX21鉴定为蜡状芽孢杆菌(Bacillus cereus)。菌株JX21的可溶性磷酸盐含量最高,为(9.35±0.89) mg/L,其次是JX7[(6.63±0.09) mg/L],WH10[(6.16±0.12) mg/L]和JX18[(5.32±0.07) mg/L]。以上解磷菌在培养72 h后,其溶磷量均达到最大值。筛选自枫香根际的解磷菌菌株(JX7、WH10、JX18、JX21)接种枫香幼苗比对照显著提高了枫香的苗高和地径(P < 0.05)。在室温条件下接种解磷菌显著提高枫香叶片内的P、Ca、Mg、Zn的含量(P < 0.05)。
筛选解磷菌均显示出良好的溶磷特性,并具有作为生物肥料的潜力。可进一步评估所筛选菌株的特性,开发其商业应用。
中图分类号:
宋娟,徐国芳,赵邢,等. 枫香根际解有机磷细菌筛选及其促生效应[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 95-104.
SONG Juan, XU Guofang, ZHAO Xing, YAO Yao, YANG Xuexiang, TANG Ronglin, CUI Jiawang, CHEN Fengmao, REN Jiahong. Screening of indigenous phosphate⁃solubilizing bacteria from Liquidambar formosana Hance rhizosphere and its potential applications for improving plant growth[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(3): 95-104.DOI: 10.3969/j.issn.1000-2006.201908022.
表1
卵黄培养基上枫香根际分离菌株的溶磷比"
strain 菌株 | D/mm (dissolved phosphorus circle diameter 溶磷圈直径) | d/mm (colony diameter 菌落直径) | D/d | ring type 圈类型 |
---|---|---|---|---|
WH10 | 32.46 ± 0.60 | 14.34 ± 0.28 | 2.26 ± 0.003 | grease ring溶脂圈 |
WH18 | 44.84 ± 0.40 | 36.34 ± 0.34 | 1.23 ± 0.002 | grease ring溶脂圈 |
WH19 | 37.67 ± 0.80 | 18.62 ± 0.44 | 2.02 ± 0.005 | grease ring溶脂圈 |
JX1 | 47.15 ± 0.30 | 34.70 ± 0.52 | 1.36 ± 0.012 | grease ring溶脂圈 |
JX7 | 8.91 ± 0.50 | 3.50 ± 0.19 | 2.55 ± 0.005 | hydrolysis ring水解圈 |
JX8 | 8.33 ± 0.70 | 4.02 ± 0.53 | 2.07 ± 0.101 | hydrolysis ring水解圈 |
JX9 | 9.60 ± 0.34 | 4.22 ± 0.26 | 2.27 ± 0.060 | hydrolysis ring水解圈 |
JX11 | 13.22 ± 0.26 | 4.66 ± 0.33 | 2.84 ± 0.146 | hydrolysis ring水解圈 |
JX12 | 7.13 ± 0.43 | 5.10 ± 0.23 | 1.40 ± 0.021 | hydrolysis ring水解圈 |
JX13 | 7.00 ± 0.54 | 3.38 ± 0.13 | 2.07 ± 0.080 | hydrolysis ring水解圈 |
JX15 | 29.53 ± 1.38 | 15.10 ± 0.85 | 1.96 ± 0.019 | grease ring溶脂圈 |
JX18 | 44.77 ± 1.64 | 29.08 ± 1.32 | 1.54 ± 0.014 | grease ring溶脂圈 |
JX19 | 40.02 ± 1.14 | 29.97 ± 0.76 | 1.34 ± 0.005 | grease ring溶脂圈 |
JX20 | 39.96 ± 0.83 | 27.04 ± 0.54 | 1.48 ± 0.002 | grease ring溶脂圈 |
JX21 | 42.45 ± 0.53 | 25.48 ± 0.36 | 1.67 ± 0.004 | grease ring溶脂圈 |
表2
根际细菌的形态特征"
strain 菌株 | cell shape 菌体形态 | Gram reaction 革兰氏染色 | 3% KOH | spores 芽孢 | flagellum 鞭毛 | aerobic condition 需氧情况 | colony morphology 菌落形状 |
---|---|---|---|---|---|---|---|
JX7 | + | G- | + | - | - | + | colonies smaller, yellowish green, circular, slimy, moist 菌落较小,黄绿色,边缘整齐,光滑湿润 |
WH10 | + | G+ | - | + | + | + | larger colonies, creamy, circular, slimy, dry 菌落较大,乳白色,圆形,边缘整齐,光滑干燥 |
JX18 | + | G+ | - | + | + | + | larger colonies,whitish, circular, slimy, dry 菌落较大,白色圆形,边缘整齐,光滑干燥 |
JX21 | + | G+ | - | + | + | + | larger colonies, circular,the middle wrinkles, slimy, dry 菌落较大,圆形,边缘整齐,中间有皱褶,光滑干燥 |
表 3
枫香根际菌株的生化特性分析"
project measureed 测定项目 | JX7 | WH10 | JX18 | JX21 |
---|---|---|---|---|
BIOLOG result BIOLOG结果 | Variovorax paradoxus 争论产 碱菌 | Bacillus mycoides 蕈状芽孢杆菌 | Bacillus cereus 蜡状芽孢杆菌 | Bacillus cereus 蜡状芽孢杆菌 |
oxidase test氧化酶 | - | + | + | + |
contact enzyme接触酶 | + | + | + | + |
lecithinase卵磷脂酶 | - | + | + | + |
gelatin hydrolysis 明胶水解 | - | + | + | + |
starch hydrolysis 淀粉水解 | - | + | + | + |
H2S test产生H2S | - | + | - | - |
citrate utilization 柠檬酸盐利用 | - | + | + | + |
indole test 吲哚试验 | + | - | + | + |
methyl red test 甲基红试验 | - | - | - | - |
oges praskaure’s 伏普试验 | + | + | + | + |
nitrate reduction 硝酸盐还原 | + | - | - | - |
表4
JX18、JX21和WH10菌株的细胞脂肪酸组成"
fatty acid 脂肪酸 | JX18 | JX21 | WH10 |
---|---|---|---|
13∶0 iso | 6.72 | 6.77 | 6.08 |
14∶0 iso | 3.10 | 3.40 | 3.11 |
14∶0 | 3.03 | 2.65 | 3.53 |
15∶0 iso | 31.45 | 20.12 | 26.00 |
15∶0 anteiso | 4.45 | 3.49 | 3.57 |
summed in feature 2 of 14∶0 3OH/16∶1 iso I | 2.74 | 3.58 | 4.06 |
15∶1 w5c | no | 4.30 | 3.51 |
16∶0 iso | 5.25 | 5.13 | 5.10 |
summed in feature 3 of 16∶1 w6c/16∶1 w7c | 8.21 | 8.95 | 7.61 |
16∶0 | 3.84 | 7.65 | 7.77 |
17∶1 iso w10c | 3.94 | 2.38 | 2.98 |
17∶1 iso w5c | 6.76 | 8.99 | 7.52 |
17∶0 iso | 8.54 | 6.55 | 6.33 |
18∶0 | 2.18 | 6.40 | no |
summed in feature 8 of 18∶1 w7c | 0.27 | 0.60 | 1.10 |
summed feature 2 of unknown 10.9525 | 2.74 | 3.58 | 4.06 |
summed feature 3 of 16∶1 w6c/16∶1 w7c | 8.21 | 8.95 | 9.28 |
sim index | 0.715 | 0.167 | 0.357 |
1 | TAKAHASHI S,ANWAR M R.Wheat grain yield,phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol[J].Field Crop Res,2007,101(2):160-171.DOI:10.1016/j.fcr.2006.11.003. |
2 | BUCHER M.Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J].New Phytol,2007,173(1):11-26.DOI:10.1111/j.1469-8137.2006.01935.x. |
3 | MITTAL V,SINGH O,NAYYAR H,et al.Stimulatory effect of phosphate⁃solubilizing fungal strains (Aspergillusawamori and Penicilliumcitrinum) on the yield of chickpea (Cicerarietinum L.cv.GPF2)[J].Soil Biol Biochem,2008,40(3):718-727.DOI:10.1016/j.soilbio.2007.10.008. |
4 | WALPOLA B C, YOON M H. Isolation and characterization of phosphate solubilizing bacteria and their co⁃inoculation efficiency on tomato plant growth and phosphorous uptake[J]. Afr J Microbiol Res,2013, 7:266-275. DOI:10.5897/AJMR12.2282. |
5 | VIRUEL E,LUCCA M E,SIÑERIZ F.Plant growth promotion traits of phosphobacteria isolated from Puna,Argentina[J].Arch Microbiol,2011,193(7):489-496.DOI:10.1007/s00203-011-0692-y. |
6 | ULÉN B,BECHMANN M,FÖLSTER J,et al.Agriculture as a phosphorus source for eutrophication in the north⁃west European countries,Norway,Sweden,United Kingdom and Ireland:a review[J].Soil Use Manag,2007,23(s1):5-15.DOI:10.1111/j.1475-2743.2007.00115.x. |
7 | SINGH H,REDDY M S.Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils[J].Eur J Soil Biol,2011,47(1):30-34.DOI:10.1016/j.ejsobi.2010.10.005. |
8 | DOBBELAERE S,CROONENBORGHS A,THYS A,et al.Effect of inoculation with wild type Azospirillumbrasilense and A.irakense strains on development and nitrogen uptake of spring wheat and grain maize[J].Biol Fertil Soils,2002,36(4):284-297.DOI:10.1007/s00374-002-0534-9. |
9 | EGAMBERDIYEVA D.Plant⁃growth⁃promoting rhizobacteria isolated from a Calcisol in a semi⁃arid region of Uzbekistan:biochemical characterization and effectiveness[J].J Plant Nutr Soil Sci,2005,168(1):94-99.DOI:10.1002/jpln.200321283. |
10 | REYES I,BERNIER L,ANTOUN H.Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicilliumrugulosum[J].Microb Ecol,2002,44(1):39-48.DOI:10.1007/s00248-002-1001-8. |
11 | ZAIDI A,KHAN M,AMIL M.Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicerarietinum L.)[J].Eur J Agron,2003,19(1):15-21.DOI:10.1016/s1161-0301(02)00015-1. |
12 | HINSINGER P,BRAVIN M,DEVAU N,et al.Soil⁃root⁃microbe interactions in the rhizosphere:a key to understanding and predicting nutrient bio availability to plants[J].RC Suelo Nutr Veg,2008,8(5):39-47.DOI:10.4067/s0718-279120080004 00008. |
13 | SABER M S M, KABESH M O. Utilization of biofertilizers in field crop production. II. a comparison study on the effect of biofertilization or sulphur application on yield and nutrient uptake by lentil plants[J]. Eur J Soil Sci, 1990, 30: 415-422. |
14 | SUNDARA B,NATARAJAN V,HARI K.Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields[J].Field Crop Res,2002,77(1):43-49.DOI:10.1016/s0378-4290(02)00048-5. |
15 | SHEN J,LI R,ZHANG F,et al.Crop yields,soil fertility and phosphorus fractions in response to long⁃term fertilization under the rice monoculture system on a calcareous soil[J].Field Crop Res,2004,86(2/3):225-238.DOI:10.1016/j.fcr.2003.08.013. |
16 | NURAINI Y,ARFARITA N,SISWANTO B.Isolation and characteristic of nitrogen⁃fixing bacteria and phosphate⁃solubilizing bacteria from soil high in mercury in tailings and compost areas of artisanal gold mine[J].Agrivita J Agr Sci,2015,37(1):0126-0537.DOI:10.17503/agrivita-2015-37-1-p001-007. |
17 | ILLMER P,SCHINNER F.Solubilization of inorganic calcium phosphates:solubilization mechanisms[J].Soil Biol Biochem,1995,27(3):257-263.DOI:10.1016/0038-0717(94)00190-c. |
18 | BASHAN Y,KAMNEV A A,DE⁃BASHAN L E.A proposal for isolating and testing phosphate⁃solubilizing bacteria that enhance plant growth[J].Biology and Fertility of Soils,2013,49(1):1-2.DOI:10.1007/s00374-012-0756-4. |
19 | KUNITSKY C, OSTERHOUT G, SASSER M. Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock Microbial Identification System[C]// MILLER M. Encyclopedia of rapid microbiological methods. River Grove, IL, USA:DAVIS Healthcare International Publishers: 2005: 1–17. |
20 | CHERKAOUI A,HIBBS J,EMONET S,et al.Comparison of two matrix⁃assisted laser desorption ionization⁃time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level[J].J Clin Microbiol,2010,48(4):1169-1175.DOI:10.1128/jcm.01881-09. |
21 | NATH D,MAURYA B R,MEENA V S.Documentation of five potassium⁃and phosphorus⁃solubilizing bacteria for their K and P⁃solubilization ability from various minerals[J].Biocatal Agric Biotechnol,2017,10:174-181.DOI:10.1016/j.bcab.2017. 03.007. |
22 | JACKSON M L,PRENTICE⁃HALL I N C,ENGLEWOOD CLIFFS N J. Soil chemical analysis[J].Soil Sci,1958,85(6):339.DOI:10.1097/00010694-195806000-00014. |
23 | KRIEG N R,SNEATH P H A,STALEY J T, et al. Bergy’s manual of determinative bacteriology[J]. Jama⁃J Am Med Assoc,2000,15(170):408. DOI:10.1136/pgmj.15.170.408. |
24 | CHEN X,PIZZATTI C,BONALDI M,et al.Biological control of lettuce drop and host plant colonization by rhizospheric and endophytic streptomycetes[J].Front Microbiol,2016,7:714.DOI:10.3389/fmicb.2016.00714. |
25 | YU X,LIU X,ZHU T H,et al.Isolation and characterization of phosphate⁃solubilizing bacteria from walnut and their effect on growth and phosphorus mobilization[J].Biol Fertil Soils,2011,47(4):437-446.DOI:10.1007/s00374-011-0548-2. |
26 | LI G E,WU X Q,YE J R,et al.Isolation and identification of phytate⁃degrading rhizobacteria with activity of improving growth of poplar and Masson pine[J].World J Microbiol Biotechnol,2013,29(11):2181-2193.DOI:10.1007/s11274-013-1384-3. |
27 | SLABBINCK B,DE BAETS B,DAWYNDT P,et al.Towards large⁃scale FAME⁃based bacterial species identification using machine learning techniques[J].Syst Appl Microbiol,2009,32(3):163-176.DOI:10.1016/j.syapm.2009.01.003. |
28 | DESPRÉS V R,NOWOISKY J F,KLOSE M,et al.Characterization of primary biogenic aerosol particles in urban,rural,and high⁃alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes[J].Biogeosciences,2007,4(6):1127-1141.DOI:10.5194/bg-4-1127-2007. |
29 | FYKSE E M,AARSKAUG T,THRANE I,et al.Legionella and non⁃Legionella bacteria in a biological treatment plant[J].Can J Microbiol,2013,59(2):102-109.DOI:10.1139/cjm-2012-0166. |
30 | ALLEN R A,TOLLEY J O,JESAITIS A J.Preparation and properties of an improved photoaffinity ligand for the N⁃formyl peptide receptor[J].Biochim Et Biophys Acta BBA⁃Gen Subj,1986,882(3):271-280.DOI:10.1016/0304-4165(86)90248-5. |
31 | SILINI⁃CHE H,SILINI A,GHOUL M,et al.Isolation and characterization of plant growth promoting traits of a rhizobacteria:Pantoeaagglomerans lma2[J].Pak J Biol Sci,2012,15(6):267-276.DOI:10.3923/pjbs.2012.267.276. |
32 | HANIF M K,HAMEED S,IMRAN A,et al.Isolation and characterization of a β⁃propeller gene containing phosphobacterium Bacillus subtilis strain KPS⁃11 for growth promotion of potato (Solanumtuberosum L.)[J].Front Microbiol,2015,6:583.DOI:10.3389/fmicb.2015.00583. |
33 | LI X L,LUO L J,YANG J S,et al.Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity⁃tolerant Aspergillus Niger strain An2[J].Appl Biochem Biotechnol,2015,175(5):2755-2768.DOI:10.1007/s12010-014-1465-2. |
34 | BERCHEBRU L,RAMEIL P,GAUDIN J C,et al.Normalization of test and evaluation of biothreat detection systems:overcoming microbial air content fluctuations by using a standardized reagent bacterial mixture[J].J Microbiol Methods,2014,105:141-145.DOI:10.1016/j.mimet.2014.07.013. |
35 | RODRÍGUEZ H,FRAGA R,GONZALEZ T,et al.Genetics of phosphate solubilization and its potential applications for improving plant growth⁃promoting bacteria[J].Plant and Soil,2006,287(1/2):15-21.DOI:10.1007/s11104-006-9056-9. |
36 | ZHAO K,PENTTINEN P,ZHANG X P,et al.Maize rhizosphere in Sichuan,China,hosts plant growth promoting Burkholderiacepacia with phosphate solubilizing and antifungal abilities[J].Microbiol Res,2014,169(1):76-82.DOI:10.1016/j.micres.2013.07.003. |
37 | SMITH S E, READ D. Mycorrhizal symbiosis[M]. San Diego:USA:Academic Press, 1997. |
38 | BHATTACHARYYA D,GARLADINNE M,LEE Y H.Volatile indole produced by rhizobacterium Proteusvulgaris JBLS202 stimulates growth of Arabidopsisthaliana through auxin,cytokinin,and brassinosteroid pathways[J].J Plant Growth Regul,2015,34(1):158-168.DOI:10.1007/s00344-014-9453-x. |
39 | PÉREZ⁃FLORES P L,VALENCIA⁃CANTERO E,ALTAMIRANO⁃HERNÁNDEZ J,et al.Bacillusmethylotrophicus M4⁃96 isolated from maize (Zeamays) rhizoplane increases growth and auxin content in Arabidopsisthaliana via emission of volatiles[J].Protoplasma,2017,254(6):2201-2213.DOI:10.1007/s00709-017-1109-9. |
40 | CALVO P,WATTS D B,KLOEPPER J W,et al.Effect of microbial⁃based inoculants on nutrient concentrations and early root morphology of corn (Zeamays)[J].J Plant Nutr Soil Sci,2017,180(5):636.DOI:10.1002/jpln.201770055. |
41 | RUDRESH D L,SHIVAPRAKASH M K,PRASAD R D.Effect of combined application of Rhizobium,phosphate solubilizing bacterium and Trichoderma spp.on growth,nutrient uptake and yield of chickpea (Ciceraritenium L.)[J].Appl Soil Ecol,2005,28(2):139-146.DOI:10.1016/j.apsoil.2004.07.005. |
42 | GULL M,HAFEEZ F Y,SALEEM M,et al.Phosphorus uptake and growth promotion of chickpea by co⁃inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture[J].Aust J Exp Agric, 2004,44(6):623.DOI:10.1071/ea02218. |
43 | POONGUZHALI S,MADHAIYAN M,TONGMIN S. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants[J]. J Microbiol biotechn,2008,18(4): 773-777. DOI: 10.1007/s12275-006-0149-1. |
44 | DE FREITAS J R,GERMIDA J J.A root tissue culture system to study winter wheat⁃rhizobacteria interactions[J].Appl Microbiol Biotechnol,1990,33(5):589-595.DOI:10.1007/bf00172557. |
[1] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[2] | 仲磊, 张焕朝, 范俊俊, 张丹丹, 江皓, 张往祥. 夏季淹水胁迫对北美枫香苗木叶色及光合荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 69-76. |
[3] | 史久洲, 姬晓悦, 陈继超, 卢雯, 徐莉. SPME/GC-MS分析不同产地枫香树脂中挥发性成分[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 239-244. |
[4] | 张昌伟,彭胜,张琳杰,王志宏,周云雷,彭密军. 以杜仲叶渣为载体固态发酵制备解磷生物肥料的工艺优化[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 134-138. |
[5] | 孙海菁,王树凤,陈益泰. 不同枫香种源对淹水胁迫的响应[J]. 南京林业大学学报(自然科学版), 2012, 36(03): 43-48. |
[6] | 王德娜,薛建辉. 施用IBA对枫香幼苗吸收土壤Cd2+的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(02): 121-124. |
[7] | 邓送求,闫家锋,关庆伟*. 南京紫金山枫香风景林空间结构分析[J]. 南京林业大学学报(自然科学版), 2010, 34(04): 117-122. |
[8] | 成铁龙1,施季森2*. 枫香半同胞子代遗传变异研究[J]. 南京林业大学学报(自然科学版), 2005, 29(01): 29-32. |
[9] | 高捍东;陈凤毛;施季森. 枫香种子成熟期的研究[J]. 南京林业大学学报(自然科学版), 2000, 24(03): 26-28. |
[10] | 雍朝柱;苏庆. 单板热板干燥技术初探[J]. 南京林业大学学报(自然科学版), 1986, 10(02): 123-130. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1489
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 753
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||