南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 13-22.doi: 10.12302/j.issn.1000-2006.202005043
收稿日期:
2020-05-25
接受日期:
2020-08-06
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
李凤日
基金资助:
HE Mengying1,2(), DONG Lihu1, LI Fengri1,*()
Received:
2020-05-25
Accepted:
2020-08-06
Online:
2021-07-30
Published:
2021-07-30
Contact:
LI Fengri
摘要:
【目的】为了准确预估长白落叶松-水曲柳4种不同行间混交方式(行间混交比例分别为1∶1、2∶2、3∶3、5∶5)的单木冠长,采用联立方程组模型分别构建了长白落叶松和水曲柳的冠长模型。【方法】基于黑龙江省尚志国有林场管理局的长白落叶松-水曲柳混交林54块标准地的样木数据,从3种非线性的基础冠长模型中选取最优冠长模型,以单分子式模型为树高曲线的基础模型,并将混交比例(Zi)和树木在混交带内位置(K)作为哑变量,加入其他树木变量、林分变量和竞争因子,分别构建长白落叶松和水曲柳的冠长模型;基于最优冠长模型和树高曲线模型建立联立方程组模型,采用非线性似乎不相关回归(NSUR)的方法进行参数估计,并对所构建的模型进行评价。【结果】长白落叶松冠长与高径比呈负相关,与林木树高和林分优势高之比呈正相关;水曲柳冠长与高径比呈负相关,与林木胸径和林分优势木胸径之比呈正相关;长白落叶松树高与长白落叶松优势木平均高呈正相关,水曲柳树高与水曲柳优势木平均高呈正相关。联立方程组预估长白落叶松冠长和树高的调整后决定系数 (
中图分类号:
贺梦莹,董利虎,李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 13-22.
HE Mengying, DONG Lihu, LI Fengri. Tree crown length prediction models for Larix olgensis and Fraxinus mandshurica in mixed plantations with different mixing methods[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 13-22.DOI: 10.12302/j.issn.1000-2006.202005043.
表1
长白落叶松-水曲柳混交林林分因子"
变量 variable | 最小值 min. | 最大值 max. | 平均值 mean | 标准差 SD | 变异系数/% CV |
---|---|---|---|---|---|
Dg/cm | 7.35 | 14.73 | 10.91 | 1.92 | 17.63 |
Hg/m | 7.96 | 15.80 | 12.47 | 2.24 | 17.97 |
HgLar/m | 7.17 | 15.87 | 11.75 | 2.16 | 18.37 |
HgFra/m | 6.67 | 15.79 | 10.39 | 2.00 | 19.22 |
D0Lar/cm | 8.47 | 21.14 | 15.73 | 2.74 | 17.39 |
D0Fra/cm | 9.36 | 21.13 | 14.43 | 2.65 | 18.34 |
H0Lar/m | 7.78 | 19.37 | 14.39 | 2.52 | 17.51 |
H0Fra/m | 9.41 | 19.07 | 14.81 | 2.50 | 16.91 |
N/(株·hm-2) | 1 207 | 3 600 | 2 060 | 460 | 22 |
NLar/(株·hm-2) | 240 | 1 727 | 763 | 335 | 44 |
NFra/(株·hm-2) | 380 | 2 667 | 1 220.25 | 388 | 32 |
ALar/a | 11 | 26 | 19 | 4 | 21 |
AFra/a | 11 | 26 | 19 | 4 | 21 |
表2
长白落叶松和水曲柳样木因子特征"
树种 species | 数据类型 data type | 变量 variable | 最小值 min. | 最大值 max. | 平均值 mean | 标准差 SD | 变异系数/% CV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长白落叶松 L. olgensis | 拟合数据 fitting data | DBH/cm | 5.00 | 25.10 | 11.31 | 3.27 | 28.94 | ||||||
H/m | 4.20 | 19.40 | 11.82 | 2.71 | 22.90 | ||||||||
LC/m | 0.90 | 13.30 | 4.90 | 1.65 | 33.74 | ||||||||
rHD | 0.48 | 2.46 | 1.08 | 0.20 | 18.21 | ||||||||
CR | 0.09 | 0.90 | 0.42 | 0.13 | 30.24 | ||||||||
HCBLar/m | 0.90 | 14.00 | 6.92 | 2.27 | 32.72 | ||||||||
检验数据 validation data | DBH/cm | 5.00 | 25.60 | 11.66 | 3.43 | 29.38 | |||||||
H/m | 5.00 | 20.60 | 12.02 | 2.87 | 23.86 | ||||||||
LC/m | 0.80 | 11.60 | 5.25 | 1.61 | 30.73 | ||||||||
rHD | 0.51 | 2.32 | 1.06 | 0.20 | 18.47 | ||||||||
CR | 0.08 | 0.86 | 0.45 | 0.14 | 30.84 | ||||||||
HCBLar/m | 1.10 | 14.40 | 6.77 | 2.54 | 37.52 | ||||||||
树种 species | 数据类型 data type | 变量 variable | 最小值 min. | 最大值 max. | 平均值 mean | 标准差 SD | 变异系数/% CV | ||||||
水曲柳 F. mandshurica | 拟合数据 fitting data | DBH/cm | 5.00 | 25.30 | 10.26 | 2.87 | 27.99 | ||||||
H/m | 5.70 | 20.00 | 12.79 | 2.38 | 18.59 | ||||||||
LC/m | 0.60 | 14.80 | 5.69 | 1.83 | 32.21 | ||||||||
rHD | 0.60 | 2.69 | 1.29 | 0.24 | 18.36 | ||||||||
CR | 0.06 | 0.94 | 0.45 | 0.12 | 27.37 | ||||||||
HCBFra/m | 0.60 | 14.00 | 7.10 | 2.06 | 29.02 | ||||||||
检验数据 validation data | DBH/cm | 5.00 | 22.20 | 9.81 | 2.83 | 28.83 | |||||||
H/m | 4.10 | 18.90 | 12.46 | 2.53 | 20.29 | ||||||||
LC/m | 0.70 | 14.40 | 5.57 | 1.88 | 33.82 | ||||||||
rHD | 0.61 | 2.42 | 1.32 | 0.24 | 18.58 | ||||||||
CR | 0.07 | 0.90 | 0.45 | 0.13 | 28.74 | ||||||||
HCBFra/m | 0.80 | 12.40 | 6.89 | 2.16 | 31.39 |
表4
长白落叶松和水曲柳冠长、树高曲线模型的参数估计结果"
模型 models | 参数 parameter | |||||||
---|---|---|---|---|---|---|---|---|
b1 | b2 | b3 | p | s1 | s2 | s3 | s4 | |
(12) | -0.092 6 (0.004 2) | -1.340 5 (0.053 9) | 2.349 6 (0.092 6) | 0.014 2 (0.015 9) | 0.441 9 (0.078 3) | 0.326 9 (0.077 7) | 0.255 3 (0.077 0) | 0.070 7 (0.076 3) |
(13) | -0.030 8 (0.004 0) | 0.080 8 (0.044 4) | 1.267 6 (0.083 8) | 0.062 6 (0.015 9) | -0.766 6 (0.101 2) | -0.936 4 (0.102 4) | -0.802 9 (0.099 2) | -1.046 7 (0.100 0) |
(14) | 5.303 1 (0.215 7) | 0.096 6 (0.006 7) | 0.936 9 (0.022 9) | 0.013 7 (0.009 2) | -0.169 1 (0.030 8) | -0.219 0 (0.026 8) | -0.164 0 (0.028 7) | -0.172 5 (0.028 3) |
(15) | 25.123 6 (0.978 2) | 0.037 8 (0.003 2) | -0.037 3 (0.002 7) | 0.016 4 (0.004 0) | 0.212 9 (0.029 3) | 0.208 0 (0.029 0) | 0.234 2 (0.030 8) | 0.216 7 (0.030 3) |
表5
长白落叶松和水曲柳冠长、树高曲线模型的拟合优度及检验结果"
模型 models | 拟合优度 goodness of fitting | 检验结果 validation result | |||
---|---|---|---|---|---|
| σ(RMSE)/ m | σ(ME)/ m | σ(MAE)/ m | σ(TRE)/ % | |
(12) | 0.481 7 | 1.188 5 | 0.302 0 | 0.939 8 | 0.197 4 |
(13) | 0.395 2 | 2.016 9 | 0.025 0 | 1.158 6 | -2.089 6 |
(14) | 0.821 4 | 1.142 8 | -0.064 3 | 0.851 5 | -0.293 7 |
(15) | 0.752 9 | 1.181 5 | 0.027 2 | 0.925 3 | -0.288 5 |
表6
联立方程组的参数估计结果"
模型 models | 变量 variable | b1 | b2 | b3 | p | s1 | s2 | s3 | s4 |
---|---|---|---|---|---|---|---|---|---|
(16) | LLar | -0.088 3 (0.004 2) | -1.436 4 (0.054 2) | 2.038 2 (0.092 0) | 0.012 4 (0.015 9) | 0.761 4 (0.078 4) | 0.643 3 (0.077 8) | 0.567 2 (0.077 1) | 0.386 1 (0.076 4) |
HLar | 5.101 3 (0.207 6) | 0.103 1 (0.006 7) | 0.929 5 (0.021 2) | 0.014 4 (0.009 8) | -0.141 9 (0.032 8) | -0.196 6 (0.028 8) | -0.139 7 (0.030 6) | -0.147 2 (0.030 4) | |
(17) | LFra | -0.030 2 (0.004 0) | 0.116 1 (0.044 4) | 1.300 4 (0.083 8) | 0.062 8 (0.015 9) | -0.840 7 (0.101 2) | -1.012 1 (0.102 3) | -0.875 5 (0.099 2) | -1.121 4 (0.100 0) |
HFra | 25.194 6 (0.989 6) | 0.037 6 (0.003 2) | -0.037 1 (0.002 7) | 0.016 3 (0.004 0) | 0.210 4 (0.029 2) | 0.205 7 (0.028 9) | 0.231 8 (0.030 7) | 0.214 2 (0.030 2) |
表7
联立方程组(16)和(17)的拟合优度及检验结果"
模型 models | 变量 variable | 拟合优度 goodness of fitting | 检验结果 validation result | |||
---|---|---|---|---|---|---|
| σ(RMSE)/ m | σ(ME)/ m | σ(MAE)/ m | σ(TRE)/ % | ||
(16) | LLar | 0.478 1 | 1.192 7 | 0.298 1 | 0.942 4 | 0.134 6 |
HLar | 0.821 6 | 1.143 1 | -0.062 6 | 0.851 4 | -0.283 6 | |
(17) | LFra | 0.395 8 | 1.424 6 | 0.022 0 | 1.159 9 | -2.098 0 |
HFra | 0.752 9 | 1.181 5 | 0.035 0 | 0.925 8 | -0.268 8 |
[1] |
VALENTINE H T, LUDLOW A R, FURNIVAL G M. Modeling crown rise in even-aged stands of Sitka spruce or Loblolly pine[J]. For Ecol Manag, 1994, 69(1/2/3):189-197.DOI: 10.1016/0378-1127(94)90228-3.
doi: 10.1016/0378-1127(94)90228-3 |
[2] |
MONSERUD R A, STERBA H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. For Ecol Manag, 1996, 80(1/2/3):57-80.DOI: 10.1016/0378-1127(95)03638-5.
doi: 10.1016/0378-1127(95)03638-5 |
[3] | 卢军, 李凤日, 张会儒, 等. 帽儿山天然次生林主要树种冠长率模型[J]. 林业科学, 2011, 47(6):70-76. |
LU J, LI F R, ZHANG H R, et al. A crown ratio model for dominant species in secondary forests in Mao’er Mountain[J]. Sci Silvae Sin, 2011, 47(6):70-76. | |
[4] |
SOARES P, TOMÉ M. A tree crown ratio prediction equation for Eucalypt plantations[J]. Ann For Sci, 2001, 58(2):193-202.DOI: 10.1051/forest:2001118.
doi: 10.1051/forest:2001118 |
[5] |
POPOOLA F S, ADESOYE P O. Crown ratio models for Tectona grandis (Linn.f) stands in Osho forest reserve,Oyo State,Nigeria[J]. J For Environ Sci, 2012, 28(2):63-67.DOI: 10.7747/jfs.2012.28.2.063.
doi: 10.7747/jfs.2012.28.2.063 |
[6] |
SATTLER D F, LEMAY V. A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND[J]. Can J For Res, 2011, 41(8):1567-1576.DOI: 10.1139/x11-078.
doi: 10.1139/x11-078 |
[7] | 胥辉, 全宏波, 王斌. 思茅松标准树高曲线的研究[J]. 西南林学院学报, 2000, 20(2):74-77. |
XU H, QUAN H B, WANG B. A study on the model of theoretical height-diameter curve of Pinus kesiya var. langbianensis[J]. J Southwest For Coll, 2000, 20(2):74-77.DOI: 10.3969/j.issn.2095-1914.2000.02.003.
doi: 10.3969/j.issn.2095-1914.2000.02.003 |
|
[8] |
ADAME P, DEL RÍO M, CAÑELLAS I. A mixed nonlinear height-diameter model for Pyrenean oak (Quercus pyrenaica Willd.)[J]. For Ecol Manag, 2008, 256(1/2):88-98.DOI: 10.1016/j.foreco.2008.04.006.
doi: 10.1016/j.foreco.2008.04.006 |
[9] | 张鹏, 王新杰, 许昊. 将乐地区马尾松标准树高曲线的研究[J]. 中南林业科技大学学报, 2015, 35(3):69-73. |
ZHANG P, WANG X J, XU H. Generalized height-diameter model of Pinus massoniana for Jiangle State-owned Forest Farm,Fujian Province[J]. J Central South Univ For Technol, 2015, 35(3):69-73.DOI: 10.14067/j.cnki.1673-923x.2015.03.014.
doi: 10.14067/j.cnki.1673-923x.2015.03.014 |
|
[10] | 唐守正, 李勇, 符利勇. 生物数学模型的统计学基础[M].2版. 北京: 高等教育出版社, 2015. |
TANG S Z, LI Y, FU L Y. Statistical foundation for biomathematical models[M].2nd ed. Beijing: Higher Education Press, 2015. | |
[11] |
TANG S Z, LI Y, WANG Y H. Simultaneous equations,error-in-variable models,and model integration in systems ecology[J]. Ecol Model, 2001, 142(3):285-294.DOI: 10.1016/S0304-3800(01)00326-X.
doi: 10.1016/S0304-3800(01)00326-X |
[12] | 李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6):9-18. |
LI X, DONG L H, LI F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. J Beijing For Univ, 2018, 40(6):9-18.DOI: 10.13332/j.1000-1522.20170428.
doi: 10.13332/j.1000-1522.20170428 |
|
[13] | 李想. 黑龙江省人工樟子松枝下高动态预测模型的研究[D]. 哈尔滨:东北林业大学, 2018. |
LI X. The study of dynamic predicting model of height to crown base for Mongolian pine plantation in Heilongjiang Province[D]. Harbin:Northeast Forestry University, 2018. | |
[14] |
DONG L H, ZHANG L J, LI F R. A three-step proportional weighting system of nonlinear biomass equations[J]. For Sci, 2015, 61(1):35-45.DOI: 10.5849/forsci.13-193.
doi: 10.5849/forsci.13-193 |
[15] | 安慧, 上官周平. 密度对刺槐幼苗生物量及异速生长模式的影响[J]. 林业科学, 2008, 44(3):151-155. |
AN H, SHANGGUAN Z P. Effects of density on biomass and allometric pattern of Robinia pseudoacacia seedling[J]. Sci Silvae Sin, 2008, 44(3):151-155.DOI: 10.3321/j.issn:1001-7488.2008.03.028.
doi: 10.3321/j.issn:1001-7488.2008.03.028 |
|
[16] | 张彦东, 王庆成, 谷艳华. 水曲柳落叶松人工幼龄混交林生长与种间竞争关系[J]. 东北林业大学学报, 1999, 27(2):6-9. |
ZHANG Y D, WANG Q C, GU Y H. The relationship between growth and interspecific competition within the ash-larch mixed stand[J]. J Northeast For Univ, 1999, 27(2):6-9.DOI: 10.3969/j.issn.1000-5382.1999.02.002.
doi: 10.3969/j.issn.1000-5382.1999.02.002 |
|
[17] | 陈丽聪, 邓华锋, 黄国胜, 等. 不同起源马尾松与杉木林分树高曲线的拟合及对比[J]. 西北农林科技大学学报(自然科学版), 2014, 42(1):57-64. |
CHEN L C, DENG H F, HUANG G S, et al. Fitting and comparison of tree height curves of Pinus massoniana Lamb and Cunninghamia lanceolata with different origins[J]. J Northwest A F Univ (Nat Sci Ed), 2014, 42(1):57-64.DOI: 10.13207/j.cnki.jnwafu.2014.01.006.
doi: 10.13207/j.cnki.jnwafu.2014.01.006 |
|
[18] | 赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4):13-18. |
ZHAO J H, KANG X G, LIU Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain,northeastern China[J]. J Beijing For Univ, 2009, 31(4):13-18.DOI: 10.3321/j.issn:1000-1522.2009.04.003.
doi: 10.3321/j.issn:1000-1522.2009.04.003 |
|
[19] | 卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高:胸径模型[J]. 北京林业大学学报, 2015, 37(11):10-25. |
LU J, ZHANG H R, LEI X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. J Beijing For Univ, 2015, 37(11):10-25.DOI: 10.13332/j.1000-1522.20140429.
doi: 10.13332/j.1000-1522.20140429 |
|
[20] |
BRONISZ K, MEHTÄTALO L. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. For Ecol Manag, 2020, 460:117901.DOI: 10.1016/j.foreco.2020.117901.
doi: 10.1016/j.foreco.2020.117901 |
[21] | 朱万才, 吴瑶, 李亚洲, 等. 不同保留密度对落叶松水曲柳混交林的影响[J]. 森林工程, 2021, 37(2):50-56. |
ZHU W C, WU Y, LI Y Z, et al. Effect of different reserve density on Larix gmelinii-Fraxinus mandshurica mixed forest[J]. Forest Enginee-ring, 2021, 37(2):50-56. | |
[22] |
VOSPERNIK S, MONSERUD R A, STERBA H. Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine?[J]. For Ecol Manage, 2010, 260(10):1735-1753.DOI: 10.1016/j.foreco.2010.07.055.
doi: 10.1016/j.foreco.2010.07.055 |
[23] |
SHARMA R P, VACEK Z, VACEK S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. For Ecol Manag, 2016, 366:208-220.DOI: 10.1016/j.foreco.2016.01.040.
doi: 10.1016/j.foreco.2016.01.040 |
[24] |
BIGING G S, DOBBERTIN M. Evaluation of competition indices in individual tree growth models[J]. For Sci, 1995, 41(2):360-377.DOI: 10.1093/forestscience/41.2.360.
doi: 10.1093/forestscience/41.2.360 |
[25] | 赵俊卉. 长白山云冷杉混交林生长模型的研究[D]. 北京:北京林业大学, 2010. |
ZHAO J H. Growth modeling for spruce-fir fo-rest in Changbai Mountains[D]. Beijing:Beijing Forestry University, 2010. |
[1] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 85-94. |
[2] | 唐依人, 贾炜玮, 王帆, 孙毓蔓, 张颖. 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 130-140. |
[3] | 宋磊, 金星姬, PUKKALA Timo, 李凤日. 长白落叶松人工林多目标经营模式研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 150-158. |
[4] | 孔鑫, 王爱英, 郝广友, 宁秋蕊, 王淼, 殷笑寒, 周永姣. 水曲柳幼苗水力结构和光合生理对光强梯度变化的耦合响应[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 83-91. |
[5] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
[6] | 朱锦迪, 韦新良, 杨晶晶, 张继艳. 地形因子对亚热带针阔混交林树种多样性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 153-161. |
[7] | 聂璐毅, 董利虎, 李凤日, 苗铮, 谢龙飞. 基于两水平非线性混合效应模型的长白落叶松削度方程构建[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 194-202. |
[8] | 孙杰杰, 李领寰, 黄玉洁, 金超, 袁位高, 江波, 沈爱华, 王维枫, 焦洁洁. 浙江省公益林中杉阔混交林群落组成与环境解释[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 179-186. |
[9] | 唐继新, 朱雪萍, 贾宏炎, 曾冀, 郭文福, 黄德卫. 西南桦红椎混交林的生长动态及林木形质分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 97-105. |
[10] | 王冬至, 胡雪娇, 李大勇, 高雨珊, 李天宇. 基于非线性混合效应模型的针阔混交林地位指数研究[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 159-166. |
[11] | 赵家豪, 袁景西, 袁在翔, 王小民, 陈斌, 郑元庆, 关庆伟. 武夷山南方铁杉针阔混交林不同地形土壤营养元素分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 176-182. |
[12] | 冯烨, 张焕朝, 杨瑞珍, 胡立煌. 杨-桤混交林及其凋落物对土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 191-196. |
[13] | 郝玉琢,周磊,吴慧,王树力. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 101-108. |
[14] | 陈霞,袁在翔,金雪梅,朱军,徐海兵,赵宸,陈斌,关庆伟. 紫金山针阔混交林主要树种空间分布格局及种间关联性[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 84-90. |
[15] | 孟苗婧,张金池,郭晓平,吴家森,赵有朋,叶立新,刘胜龙. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 106-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||