南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 49-57.doi: 10.12302/j.issn.1000-2006.202010004
收稿日期:
2020-10-02
接受日期:
2021-05-06
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
甄贞
基金资助:
ZHAO Yinghui1,2(), GUO Xinlong1, ZHEN Zhen1,2,*()
Received:
2020-10-02
Accepted:
2021-05-06
Online:
2021-07-30
Published:
2021-07-30
Contact:
ZHEN Zhen
摘要:
【目的】通过组合机载激光雷达(airborne laser scanning, ALS)数据和Sentinel-2A数据提取特征变量,探讨估算天然次生林地上生物量(aboveground biomass, AGB)最佳的变量组合方式和估算方法。【方法】以2015年ALS数据、2016年Sentinel-2A数据和黑龙江帽儿山林场森林资源连续清查固定样地数据为数据源,通过ALS数据提取高度特征变量(all the LiDAR variables, 记为AL),Sentinel-2A数据提取若干植被指数变量(all the optical variables, 记为AO),然后将光学-ALS结合变量(combined optical and LiDAR index, COLI,记为ICOL)结合成为新的变量
中图分类号:
赵颖慧,郭新龙,甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 49-57.
ZHAO Yinghui, GUO Xinlong, ZHEN Zhen. Estimation of aboveground biomass of natural secondary forests based on optical-ALS variable combination and non-parametric models[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 49-57.DOI: 10.12302/j.issn.1000-2006.202010004.
表1
帽儿山固定样地统计信息"
林分类型 forest types | 样地数 plots number | 胸径/cm DBH | ||
---|---|---|---|---|
最大值 max. | 最小值 min. | 平均值 mean | ||
白桦林 Betula phatyphylla forest | 4 | 14.6 | 13.1 | 13.8 |
阔叶混交林 broad-leaved mixed forest | 134 | 19.8 | 9.2 | 15.1 |
胡桃楸林 Juglans mandshurica forest | 1 | 12.4 | 12.4 | 12.4 |
落叶松林 Larix gmelinii forest | 8 | 19.7 | 14.2 | 15.5 |
山杨林 Populus davidiana forest | 1 | 17.0 | 17.0 | 17.0 |
柞树林 Quercus mongolica forest | 4 | 22.4 | 14.0 | 18.0 |
樟子松林 Pinus sylvestris forest | 1 | 14.1 | 14.1 | 14.1 |
针阔混交林 mixed broadleaf-conifer forest | 7 | 15.0 | 9.4 | 11.6 |
针叶混交林 coniferous mixed forest | 1 | 16.0 | 16.0 | 16.0 |
表2
ALS特征变量与AGB拟合的精度"
特征变量 feature variable | R2 | σ(RMSE)/ (t·hm-2) | σ(rRMSE)/ % | 特征变量 feature variable | R2 | σ(RMSE)/ (t·hm-2) | σ(rRMSE)/ % |
---|---|---|---|---|---|---|---|
h10 | 0.39 | 40.95 | 30.48 | hmax | 0.20 | 47.13 | 35.07 |
h20 | 0.42 | 39.97 | 29.75 | hmin | 0.15 | 48.86 | 36.36 |
h30 | 0.44 | 39.52 | 29.41 | hskew | 0.28 | 44.76 | 33.31 |
h40 | 0.44 | 39.47 | 29.37 | hkurt | 0.19 | 47.32 | 35.22 |
h50 | 0.43 | 39.84 | 29.65 | hstd | 0.21 | 46.78 | 34.81 |
h60 | 0.41 | 40.47 | 30.12 | hmean | 0.45 | 39.16 | 29.14 |
h70 | 0.39 | 41.11 | 30.59 | hcv | 0.20 | 47.07 | 35.03 |
h80 | 0.35 | 42.24 | 31.44 | hvar | 0.21 | 46.86 | 34.87 |
h90 | 0.30 | 43.90 | 32.67 | hmode | 0.27 | 44.96 | 33.46 |
h99 | 0.22 | 46.27 | 34.43 | C | 0.19 | 47.07 | 35.03 |
表3
各个模型的精度结果"
模型 model | 变量组合 variables combination | R2 | σ(RMSE)/ (t·hm-2) | σ(rRMSE)/ % |
---|---|---|---|---|
SMLR | AO+AL | 0.22 | 39.67 | 29.52 |
| 0.39 | 30.43 | 22.65 | |
| 0.35 | 32.58 | 24.25 | |
| 0.47 | 27.39 | 20.38 | |
| 0.44 | 28.96 | 21.55 | |
| 0.52 | 26.37 | 19.62 | |
K-NN | AO+AL | 0.37 | 37.28 | 27.74 |
| 0.56 | 23.49 | 17.48 | |
| 0.52 | 24.91 | 18.54 | |
| 0.61 | 25.73 | 19.15 | |
| 0.58 | 27.64 | 20.57 | |
| 0.66 | 26.19 | 19.49 | |
SVR | AO+AL | 0.41 | 34.70 | 25.82 |
| 0.60 | 20.34 | 15.14 | |
| 0.56 | 23.49 | 17.48 | |
| 0.67 | 21.67 | 16.13 | |
| 0.65 | 22.52 | 16.76 | |
| 0.72 | 20.98 | 15.61 | |
RF | AO+AL | 0.45 | 33.61 | 25.01 |
| 0.64 | 19.38 | 14.42 | |
| 0.62 | 21.29 | 15.84 | |
| 0.75 | 17.35 | 12.91 | |
| 0.72 | 18.64 | 13.87 | |
| 0.79 | 16.07 | 11.96 | |
SSAE | AO+AL | 0.50 | 31.75 | 23.63 |
| 0.78 | 12.71 | 9.46 | |
| 0.76 | 15.36 | 11.43 | |
| 0.81 | 13.68 | 10.18 | |
| 0.79 | 15.07 | 11.22 | |
| 0.83 | 11.06 | 8.23 |
[1] |
GOETZ S, DUBAYAH R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change[J]. Carbon Manag, 2011, 2(3):231-244. DOI: 10.4155/cmt.11.18.
doi: 10.4155/cmt.11.18 |
[2] |
ZOLKOS S G, GOETZ S J, DUBAYAH R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing[J]. Remote Sens Environ, 2013, 128:289-298. DOI: 10.1016/j.rse.2012.10.017.
doi: 10.1016/j.rse.2012.10.017 |
[3] | 娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感, 2011, 23(1):1-8. |
LOU X T, ZENG Y, WU B F. Advances in the estimation of above-ground biomass of forest using remote sensing[J]. Remote Sens Land Resour, 2011, 23(1):1-8. DOI: 10.1016/j.ejphar.2011.07.001.
doi: 10.1016/j.ejphar.2011.07.001 |
|
[4] |
TSUI O W, COOPS N C, WULDER M A, et al. Integrating airborne LiDAR and space-borne radar via multivariate Kriging to estimate above-ground biomass[J]. Remote Sens Environ, 2013, 139:340-352. DOI: 10.1016/j.rse.2013.08.012.
doi: 10.1016/j.rse.2013.08.012 |
[5] |
LI W, NIU Z, LIANG X L, et al. Geostatistical modeling using LiDAR-derived prior knowledge with SPOT-6 data to estimate temperate forest canopy cover and above-ground biomass via strati-fied random sampling[J]. Int J Appl Earth Obs Geoinformation, 2015, 41:88-98. DOI: 10.1016/j.jag.2015.04.020.
doi: 10.1016/j.jag.2015.04.020 |
[6] |
CHEN X W, LI B L, LIN Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. For Ecol Manag, 2003, 117(1/2/3):503-514. DOI: 10.1016/S0378-1127(02)00455-3.
doi: 10.1016/S0378-1127(02)00455-3 |
[7] | 安利波, 毕会涛, 杨红震, 等. 河南不同立地条件下栓皮栎天然次生林群落生物量结构特征[J]. 河南农业大学学报, 2016, 50(5):624-628. |
AN L B, BI H T, YANG H Z, et al. Structure characteristics of community biomass of Quercus variabilis natural secondary forest under different site conditions in Henan Province[J]. J Henan Agric Univ, 2016, 50(5):624-628. DOI: 10.16445/j.cnki.1000-2340.2016.05.008.
doi: 10.16445/j.cnki.1000-2340.2016.05.008 |
|
[8] | 赵金龙, 王泺鑫, 韩海荣, 等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J]. 生态学报, 2014, 34(23):7026-7037. |
ZHAO J L, WANG L X, HAN H R, et al. Biomass and spatial distribution characteristics of Pinus tabulaeformis natural secondary forest at different age groups in the Liaoheyuan Nature Reserve, Hebei Province[J]. Acta Ecol Sin, 2014, 34(23):7026-7037. DOI: 10.5846/stxb201303060357.
doi: 10.5846/stxb201303060357 |
|
[9] | 申鑫, 曹林, 佘光辉. 高光谱与高空间分辨率遥感数据的亚热带森林生物量反演[J]. 遥感学报, 2016, 20(6):1446-1460. |
SHEN X, CAO L, SHE G H. Subtropical forest biomass estimation based on hyperspectral and high-resolution remotely sensed data[J]. J Remote Sens, 2016, 20(6):1446-1460. DOI: 10.11834/jrs.20165210.
doi: 10.11834/jrs.20165210 |
|
[10] |
LI Y C, LI M Y, LI C, et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms[J]. Sci Rep, 2020, 10:9952. DOI: 10.1038/s41598-020-67024-3.
doi: 10.1038/s41598-020-67024-3 |
[11] |
HUANG W L, SUN G Q, DUBAYAH R, et al. Mapping biomass change after forest disturbance: applying LiDAR footprint-derived models at key map scales[J]. Remote Sens Environ, 2013, 134:319-332. DOI: 10.1016/j.rse.2013.03.017.
doi: 10.1016/j.rse.2013.03.017 |
[12] |
MONTESANO P M, NELSON R F, DUBAYAH R O, et al. The uncertainty of biomass estimates from LiDAR and SAR across a boreal forest structure gradient[J]. Remote Sens Environ, 2014, 154:398-407. DOI: 10.1016/j.rse.2014.01.027.
doi: 10.1016/j.rse.2014.01.027 |
[13] |
NAESSET E, GOBAKKEN T, SOLBERG S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: a case study from a boreal forest area[J]. Remote Sens Environ, 2011, 115(12):3599-3614. DOI: 10.1016/j.rse.2011.08.021.
doi: 10.1016/j.rse.2011.08.021 |
[14] |
HUDAK A T, STRAND E K, VIERLING L A, et al. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys[J]. Remote Sens Environ, 2012, 123:25-40. DOI: 10.1016/j.rse.2012.02.023.
doi: 10.1016/j.rse.2012.02.023 |
[15] |
PFLUGMACHER D, COHEN W B, KENNEDY R E. Using Landsat-derived disturbance history (1972-2010) to predict current forest structure[J]. Remote Sens Environ, 2012, 122:146-165. DOI: 10.1016/j.rse.2011.09.025.
doi: 10.1016/j.rse.2011.09.025 |
[16] |
ZHAO K G, POPESCU S, NELSON R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sens Environ, 2009, 113(1):182-196. DOI: 10.1016/j.rse.2008.09.009.
doi: 10.1016/j.rse.2008.09.009 |
[17] |
ASNER G P, POWELL G V, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. PNAS, 2010, 107(38):16738-16742. DOI: 10.1073/pnas.1004875107.
doi: 10.1073/pnas.1004875107 |
[18] |
CAO L, COOPS N C, INNES J L, et al. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data[J]. Remote Sens Environ, 2016, 178:158-171. DOI: 10.1016/j.rse.2016.03.012.
doi: 10.1016/j.rse.2016.03.012 |
[19] |
FERRAZ A, SAATCHI S, MALLET C, et al. Airborne lidar estimation of aboveground forest biomass in the absence of field inventory[J]. Remote Sens, 2016, 8(8):653. DOI: 10.3390/rs8080653.
doi: 10.3390/rs8080653 |
[20] |
BROVKINA O, NOVOTNY J, CIENCIALA E, et al. Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe[J]. Ecol Eng, 2017, 100:219-230. DOI: 10.1016/j.ecoleng.2016.12.004.
doi: 10.1016/j.ecoleng.2016.12.004 |
[21] |
EDIRIWEERA S, PATHIRANA S, DANAHER T, et al. Estimating above-ground biomass by fusion of LiDAR and multispectral data in subtropical woody plant communities in topographically complex terrain in north-eastern Australia[J]. J For Res, 2014, 25(4):761-771. DOI: 10.1007/s11676-014-0485-7.
doi: 10.1007/s11676-014-0485-7 |
[22] | 郭艺歌, 王新云, 何杰, 等. 基于多源遥感数据的森林生物量估算模型研究[J]. 人民长江, 2016, 47(3):17-22. |
GUO Y G, WANG X Y, HE J, et al. Study on forest biomass estimation model based on multisource remote sensing data[J]. Yangtze River, 2016, 47(3):17-22. DOI: 10.16232/j.cnki.1001-4179.2016.03.005.
doi: 10.16232/j.cnki.1001-4179.2016.03.005 |
|
[23] | 李明阳, 吴军, 余超, 等. 福建武夷山自然保护区森林碳储量遥感估测方法与空间分析[J]. 南京林业大学学报(自然科学版), 2014, 38(6):6-10. |
LI M Y, WU J, YU C, et al. Estimation and spatial analysis of forest carbon stocks based on remote sensing technology in Wuyi Mountain National Reserve of Fujian Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):6-10. DOI: 10.3969/j.issn.1000-2006.2014.06.002.
doi: 10.3969/j.issn.1000-2006.2014.06.002 |
|
[24] | 潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156. |
PAN L, SUN Y J, WANG Y F, et al. Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):149-156. DOI: 10.3969/j.issn.1000-2006.201811012.
doi: 10.3969/j.issn.1000-2006.201811012 |
|
[25] |
TIAN X, LI Z Y, SU Z B, et al. Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data[J]. Int J Remote Sens, 2014, 35(21):7339-7362. DOI: 10.1080/01431161.2014.967888.
doi: 10.1080/01431161.2014.967888 |
[26] |
FASSNACHT F E, HARTIG F, LATIFI H, et al. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass[J]. Remote Sens Environ, 2014, 154:102-114. DOI: 10.1016/j.rse.2014.07.028.
doi: 10.1016/j.rse.2014.07.028 |
[27] | 蒙诗栎, 庞勇, 张钟军, 等. WorldView-2纹理的森林地上生物量反演[J]. 遥感学报, 2017, 21(5):812-824. |
MENG S L, PANG Y, ZHANG Z J, et al. Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2[J]. J Remote Sens, 2017, 21(5):812-824. DOI: 10.11834/jrs.20176083.
doi: 10.11834/jrs.20176083 |
|
[28] |
SHAO Z F, ZHANG L J, WANG L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2017, 10(12):5569-5582. DOI: 10.1109/JSTARS.2017.2748341.
doi: 10.1109/JSTARS.2017.2748341 |
[29] |
ZHANG L J, SHAO Z F, LIU J C, et al. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data[J]. Remote Sens, 2019, 11(12):1459. DOI: 10.3390/rs11121459.
doi: 10.3390/rs11121459 |
[30] | 董利虎. 黑龙江省主要树种相容性生物量模型研究[D]. 哈尔滨: 东北林业大学, 2012. |
DONG L H. Compatible biomass models of main tree species in Heilongjiang Province[D]. Harbin: Northeast Forestry University, 2012. | |
[31] |
ANDERSEN H E, MCGAUGHEY R J, REUTEBUCH S E. Estimating forest canopy fuel parameters using LIDAR data[J]. Remote Sens Environ, 2005, 94(4):441-449. DOI: 10.1016/j.rse.2004.10.013.
doi: 10.1016/j.rse.2004.10.013 |
[32] |
LU D S, CHEN Q, WANG G X, et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates[J]. Int J For Res, 2012(2):1-16. DOI: 10.1155/2012/436537.
doi: 10.1155/2012/436537 |
[33] |
CHEN Q, LAURIN G V, BATTLES J J, et al. Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass[J]. Remote Sens Environ, 2012, 121:108-117. DOI: 10.1016/j.rse.2012.01.021.
doi: 10.1016/j.rse.2012.01.021 |
[34] |
LUO S Z, WANG C, XI X H, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J]. Ecol Indic, 2017, 73:378-387. DOI: 10.1016/j.ecolind.2016.10.001.
doi: 10.1016/j.ecolind.2016.10.001 |
[35] |
徐婷, 曹林, 申鑫, 等. 基于机载激光雷达与Landsat 8 OLI数据的亚热带森林生物量估算[J]. 植物生态学报, 2015, 39(4):309-321.
doi: 10.17521/cjpe.2015.0030 |
XU T, CAO L, SHEN X, et al. Estimates of subtropical forest biomass based on airborne LiDAR and Landsat 8 OLI data[J]. Chin J Plant Ecol, 2015, 39(4):309-321. DOI: 10.17521/cjpe.2015.0030.
doi: 10.17521/cjpe.2015.0030 |
|
[36] | 曹霖, 彭道黎, 王雪军, 等. 应用Sentinel-2A卫星光谱与纹理信息的森林蓄积量估算[J]. 东北林业大学学报, 2018, 46(9):54-58. |
CAO L, PENG D L, WANG X J, et al. Estimation of forest stock volume with spectral and textural information from the Sentinel-2A[J]. J Northeast For Univ, 2018, 46(9):54-58. DOI: 10.13759/j.cnki.dlxb.2018.09.012.
doi: 10.13759/j.cnki.dlxb.2018.09.012 |
|
[37] | ROUSE J W J, HAAS R H, SCHELL J A, et al. Monitoring ve-getation systems in the great plains with ERTS[EB/OL]. https://ntrs.nasa.gov/api/citations/19740022614/downloads/19740022614.pdf . 1974. |
[38] |
RICHARDSON A J, WIEGAND C L. Distinguishing vegetation from soil background information[J]. Photogramm Eng Remote Sens, 1977, 43(12):1541-1552. DOI: 10.1109/TGE.1977.294499.
doi: 10.1109/TGE.1977.294499 |
[39] |
HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sens Environ, 2002, 83(1/2):195-213. DOI: 10.1016/S0034-4257(02)00096-2.
doi: 10.1016/S0034-4257(02)00096-2 |
[40] |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666. DOI: 10.2307/1936256.
doi: 10.2307/1936256 |
[41] |
GITELSON A A, VIÑA A, CIGANDA V, et al. Remote estimation of canopy chlorophyll content in crops[J]. Geophys Res Lett, 2005, 32(8):L08403. DOI: 10.1029/2005GL022688.
doi: 10.1029/2005GL022688 |
[42] |
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sens Environ, 1996, 55(2):95-107. DOI: 10.1016/0034-4257(95)00186-7.
doi: 10.1016/0034-4257(95)00186-7 |
[43] |
GITELSON A A, MERZLYAK M N. Remote estimation of chlorophyll content in higher plant leaves[J]. Int J Remote Sens, 1997, 18(12):2691-2697. DOI: 10.1080/014311697217558.
doi: 10.1080/014311697217558 |
[44] |
GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. J Plant Physiol, 2003, 160(3):271-282. DOI: 10.1078/0176-1617-00887.
doi: 10.1078/0176-1617-00887 |
[45] | 谢福明, 舒清态, 字李, 等. 基于K-NN非参数模型的高山松生物量遥感估测研究[J]. 江西农业大学学报, 2018, 40(4):743-750. |
XIE F M, SHU Q T, ZI L, et al. Remote sensing estimation of Pinus densata aboveground biomass based on K-NN nonparametric model[J]. Acta Agric Univ Jiangxiensis, 2018, 40(4):743-750. DOI: 10.13836/j.jjau.2018094.
doi: 10.13836/j.jjau.2018094 |
|
[46] |
GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sens Environ, 2012, 125:80-91. DOI: 10.1016/j.rse.2012.07.006.
doi: 10.1016/j.rse.2012.07.006 |
[47] |
PANDIT S, TSUYUKI S, DUBE T. Estimating above-ground biomass in sub-tropical buffer zone community forests, Nepal, using Sentinel-2 data[J]. Remote Sens, 2018, 10(4):601. DOI: 10.3390/rs10040601.
doi: 10.3390/rs10040601 |
[48] |
STEPHEN A B, PHILIP H Y. The trouble with R2[J]. Journal of Parametrics, 2006, 25(1):87-114. DOI: 10.1080/10157891.2006.10462273.
doi: 10.1080/10157891.2006.10462273 |
[49] |
ASTOLA H, HÄME T, SIRRO L, et al. Comparison of Sentinel-2 and Landsat-8 imagery for forest variable prediction in boreal region[J]. Remote Sens Environ. 2019, 223:257-273. DOI: 10.1016/j.rse.2019.01.019.
doi: 10.1016/j.rse.2019.01.019 |
[50] | 郑阳, 吴炳方, 张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报, 2017, 21(2):318-328. |
ZHENG Y, WU B F, ZHANG M. Estimating the above ground biomass of winter wheat using the Sentinel-2 data[J]. J Remote Sens, 2017, 21(2):318-328. DOI: 10.11834/jrs.20176269.
doi: 10.11834/jrs.20176269 |
|
[51] | 雷相东. 机器学习算法在森林生长收获预估中的应用[J]. 北京林业大学学报, 2019, 41(12):23-36. |
LEI X D. Applications of machine learning algorithms in forest growth and yield prediction[J]. J Beijing For Univ, 2019, 41(12):23-36. DOI: 10.12171/j.1000-1522.20190356.
doi: 10.12171/j.1000-1522.20190356 |
|
[52] | 孙雪莲. 基于Landsat 8-OLI的香格里拉高山松林生物量遥感估测模型研究[D]. 昆明: 西南林业大学, 2016. |
SUN X L. Biomass estimation model of Pinus densata forests in Shangri-La City based on Landsat 8-OLI by remote sensing[D]. Kunming: Southwest Forestry University, 2016. | |
[53] |
HAME T, RAUSTE Y, ANTROPOV O, et al. Improved mapping of tropical forests with optical and SAR imagery, part II: above ground biomass estimation[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2013, 6(1):92-101. DOI: 10.1109/JSTARS.2013.2241020.
doi: 10.1109/JSTARS.2013.2241020 |
[1] | 周友锋, 谢秉楼, 李明诗. 基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 169-178. |
[2] | 董玉洁, 毛岭峰, 张敏, 鲁旭东, 吴秀萍. 华东地区亚热带典型常绿阔叶林地上生物量与环境因子的关系[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 74-80. |
[3] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[4] | 巨一琳, 姬永杰, 黄继茂, 张王菲. 联合LiDAR和多光谱数据森林地上生物量反演研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 58-68. |
[5] | 董一桥, 刘倩倩, 彭孝楠, 翁泽宇, 刘鑫, 徐海兵, 戴康龙, 董丽娜, 张金池. 人为践踏对南京紫金山天然次生林土壤渗透性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 163-170. |
[6] | 张国飞, 岳彩荣, 罗洪斌, 谷雷, 朱泊东. 基于极化定向角补偿的思茅松林地上生物量反演[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 185-192. |
[7] | 赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32. |
[8] | 陈晨, 刘光武. 黄龙山林区白皮松天然次生林生长规律研究[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 125-130. |
[9] | 潘磊, 孙玉军, 王轶夫, 陈丽萍, 曹元帅. 基于Sentinel⁃1和Sentinel⁃2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 149-156. |
[10] | 管惠文,董希斌,张甜,曲杭峰,王智勇,阮加甫. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 68-76. |
[11] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
[12] | 钱国平,赵志霞,李正才,周君刚,程彩芳,赵睿宇,孙娇娇. 火烧对北亚热带天然次生林土壤有机碳的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 115-119. |
[13] | 周华,孟盛旺,刘琪璟. 亚热带常绿阔叶林幼树与灌木的地上生物量模型[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 79-86. |
[14] | 高艳平,丁访军,潘明亮,周凤娇,吴鹏. 贵州西部光皮桦天然次生林碳素积累及分配特征[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 51-56. |
[15] | 曹林,朱兴洲,代劲松,许子乾,佘光辉. 基于机载小光斑LiDAR数据插值的亚热带森林丘陵地形的误差分析[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||