南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 138-144.doi: 10.12302/j.issn.1000-2006.202010032
收稿日期:
2020-10-21
接受日期:
2021-03-02
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
尚旭岚
基金资助:
SUN Caowen(), ZHONG Wenwen, FU Xiangxiang, SHANG Xulan*(), FANG Shengzuo
Received:
2020-10-21
Accepted:
2021-03-02
Online:
2022-01-30
Published:
2022-02-09
Contact:
SHANG Xulan
摘要:
【目的】青钱柳是我国特有的珍稀多用途树种,研究青钱柳幼树地上部分生物量生长规律,为发展叶用林提供依据。【方法】以6年生的青钱柳人工幼林为研究对象,对其生长特性及生物量的分配进行了研究,同时选取了37株样木进行地上部分生物量及相关测树因子的分析评价,从19个生物量模型中进行筛选,构建了青钱柳人工林各生物量组分及地上部分生物量与相关测树因子的预估方程。【结果】青钱柳幼林地上部分生物量(W)与胸径(D)具有高度相关性,筛选的4个模型均以胸径作为自变量,则:①干生物量模型 W=0.15 D2.1, R2=0.982;②枝生物量模型 W=0.05 D1.88, R2=0.864;③叶生物量模型 W=0.07 D1.55, R2=0.802;④地上部分生物量模型 W=0.28 D1.95, R2=0.976。【结论】不同密度下6年生青钱柳幼林生长尚未郁闭,受密度效应的影响较低,胸径、树高和单株材积的总生长量之间差异不显著,单株和林分生物量分配模式基本相似,地上部分各器官生物量分配由大到小表现为干(73%)> 枝(16%)> 叶(11%)。
中图分类号:
孙操稳,仲文雯,洑香香,等. 青钱柳幼林地上部分生物量生长模型研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 138-144.
SUN Caowen, ZHONG Wenwen, FU Xiangxiang, SHANG Xulan, FANG Shengzuo. A study on growth and aboveground biomass production of juvenile Cyclocarya paliurus plantations[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 138-144.DOI: 10.12302/j.issn.1000-2006.202010032.
表1
6年生青钱柳不同密度林分连年生长量"
林分密度/ (株·hm-2) stand density | 树高生长量/(m·a-1) tree height growth | 胸径生长量/(cm·a-1) DBH growth | 材积生长量/(m3·a-1) volume growth | |||
---|---|---|---|---|---|---|
平均 average | 连年 annual | 平均 average | 连年 annual | 平均 average | 连年 annual | |
521 | 0.95±0.10 a | 0.63±0.43 a | 1.36±0.05 a | 2.00±0.23 a | 0.002 9±0.000 3 a | 0.008 3±0.002 3 a |
694 | 0.95±0.07 a | 0.71±0.31 a | 1.33±0.07 a | 2.27±0.29 a | 0.002 8±0.000 1 a | 0.008 7±0.000 4 a |
1 041 | 0.93±0.11 a | 0.82±0.40 a | 1.31±0.41 a | 2.41±0.49 a | 0.002 8±0.000 1 a | 0.009 9±0.000 5 a |
表2
37株标准木生长指标描述统计"
径阶/cm diameter class | 株数 number | 胸径/cm DBH | 树高/m height | 冠长/m crown length | 冠幅/m crown width | 树冠体积/m3 crown volume | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值mean | CV | 均值mean | CV | 均值mean | CV | 均值mean | CV | 均值mean | CV | ||||||
2 | 1 | 1.80 | 2.70 | 2.00 | 1.50 | 0.79 | |||||||||
4 | 5 | 4.42±0.62 | 0.14 | 4.76±0.57 | 0.12 | 3.18±0.43 | 0.14 | 2.48±0.70 | 0.28 | 2.09±0.86 | 0.41 | ||||
6 | 7 | 6.09±0.36 | 0.06 | 5.29±0.65 | 0.12 | 3.71±0.62 | 0.17 | 2.99±0.56 | 0.19 | 2.93±0.85 | 0.29 | ||||
8 | 10 | 7.73±0.46 | 0.06 | 6.30±0.58 | 0.09 | 4.50±0.64 | 0.14 | 3.37±0.30 | 0.09 | 3.95±0.72 | 0.18 | ||||
10 | 8 | 9.55±0.49 | 0.05 | 7.36±0.87 | 0.12 | 5.26±0.78 | 0.15 | 4.03±0.45 | 0.11 | 5.46±0.68 | 0.12 | ||||
12 | 5 | 11.80±0.32 | 0.03 | 7.86±0.39 | 0.05 | 5.98±0.40 | 0.07 | 4.48±0.70 | 0.16 | 6.96±0.94 | 0.14 | ||||
14 | 1 | 13.10 | 8.10 | 6.10 | 4.90 | 7.74 | |||||||||
合计total | 37 | 7.90±2.65 | 0.34 | 4.51±1.17 | 0.26 | 3.46±0.88 | 0.26 | 4.26 | 0.44 |
表3
青钱柳不同生物量组分含水率的差异"
径阶/cm diameter class | 干stem | 枝branch | 叶leaf | ||||||
---|---|---|---|---|---|---|---|---|---|
鲜质量/kg fresh weight | 干质量/kg dry weight | 含水率/% moisture content | 鲜质量/kg fresh weight | 干质量/kg dry weight | 含水率/% moisture content | 鲜质量/kg fresh weight | 干质量/kg dry weight | 含水率/% moisture content | |
4 | 7.7 | 4.5 | 41.6 | 2.8 | 1.4 | 50.0 | 3.1 | 1.5 | 51.6 |
6 | 12.1 | 7.4 | 38.8 | 6.5 | 2.4 | 63.1 | 4.8 | 2.2 | 54.2 |
8 | 16.5 | 8.7 | 47.3 | 5.4 | 2.3 | 57.4 | 2.8 | 1.4 | 50.0 |
10 | 20.2 | 10.7 | 47.0 | 7.1 | 3.5 | 50.7 | 4.8 | 2.1 | 56.3 |
12 | 41.8 | 22.3 | 46.7 | 14.7 | 7.1 | 51.7 | 9.5 | 4.4 | 53.7 |
表5
筛选的青钱柳生物量模型"
干生物量stem biomass | 枝生物量branch biomass | 叶生物量leaf biomass | 地上部分生物量up ground biomass | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
模型model | R2 | SSR | 模型model | R2 | SSR | 模型model | R2 | SSR | 模型model | R2 | SSR |
W=0.15 D2.1 | 0.98 | 0.47 | W=0.56 D-0.706 H+0.72 VC | 0.92 | 11.46 | W=0.163 D-0.182 H+0.431 VC | 0.81 | 8.05 | W=0.28 D1.95 | 0.98 | 0.54 |
W=0.019+0.033(D2H)- 8.501×10-6(D2H)2 | 0.95 | 130.34 | W=0.045 D1.526 | 0.92 | 11.88 | W=0.225 D0.472 | 0.80 | 8.47 | W=0.783+0.043(D2H)- 1.078×10-5(D2H)2 | 0.96 | 198.81 |
W=0.097(D2H)0.797 | 0.94 | 151.23 | W=0.083 D1.3 | 0.91 | 13.00 | W=0.07 D1.55 | 0.80 | 3.40 | W=0.409 D1.588 | 0.95 | 210.83 |
W=0.186 D2.112 | 0.93 | 168.04 | W=0.025(D2H)0.784 | 0.87 | 18.91 | W=0.094 D0.913 | 0.80 | 8.82 | W=0.16(D2H)0.771 | 0.95 | 221.94 |
W=0.216 D1.841 | 0.93 | 169.71 | W=0.33+0.06(D2H)- 9.987×10-7(D2H)2 | 0.87 | 19.10 | W=0.36 | 0.78 | 3.89 | W=0.297 D1.873 | 0.95 | 232.52 |
W=2.152+0.022(D2H) | 0.93 | 176.61 | W=0.05 D1.88 | 0.86 | 3.18 | W=0.27×1.26D | 0.76 | 4.08 | W=3.488+0.03(D2H) | 0.94 | 273.26 |
W=0.88×1.36D | 0.90 | 2.56 | W=0.581+0.005(D2H) | 0.86 | 19.73 | W=0.06(D2H)0.578 | 0.75 | 10.86 | W=1.44×1.33D | 0.93 | 1.69 |
表7
不同密度林分青钱柳平均木和林分地上部分各器官生物量估算"
林分密度/ (株·hm-2) stand density | 干生物量 stem biomass | 枝生物量 branch biomass | 叶生物量 leaf biomass | 地上部分生物量 upground biomass | ||||
---|---|---|---|---|---|---|---|---|
平均木/ (kg·株-1) single tree | 林分/ (kg·hm-2) stands | 平均木/ (kg·株-1) single tree | 林分/ (kg·hm-2) stands | 平均木/ (kg·株-1) single tree | 林分/ (kg·hm-2) stands | 平均木/ (kg·株-1) single tree | 林分/ (kg·hm-2) stands | |
521 | 11.3±2.10 a | 5 889.0±1 071.8 c | 2.4±0.36 a | 1 246.9±205.20 c | 1.7±0.26 a | 882.2±120.0 c | 15.5±2.60 a | 8 059.9±1 366.3 c |
694 | 11.9±1.36 a | 8 228.5±964.7 b | 2.5±0.23 a | 1 760.5±152.26 b | 1.7±0.15 a | 1 221.4±105.0 b | 16.2±1.78 a | 11 238.2±1 225.9 b |
1 041 | 11.4±0.76 a | 11 926.4±786.2 a | 2.5±0.15 a | 2 552.7±147.71 a | 1.7±0.10 a | 1 787.1±84.1 a | 15.7±0.93 a | 16 336.7±1 003.2 a |
[1] | 徐明生, 沈勇根, 吴海龙, 等. 青钱柳水提物降血糖作用的研究[J]. 营养学报, 2004, 26(3):230-231,234. |
XU M S, SHEN Y G, WU H L, et al. The hypoglycemic effects of Cyclocarya paliurus (Batal.) Iljinsk water extracts on diabetes mice[J]. Acta Nutr Sin, 2004, 26(3):230-231,234.DOI: 10.3321/j.issn:0512-7955.2004.03.018.
doi: 10.3321/j.issn:0512-7955.2004.03.018 |
|
[2] | 吴卫. 青钱柳化学成分和生物活性研究概况[J]. 中草药, 2001, 32(4):365-366. |
WU W. Review in studies on chemical constituents and bioactivities of Cyclocarya paliurus[J]. Chin Tradit Herb Drugs, 2001, 32(4):365-366.DOI: 10.3321/j.issn:0253-2670.2001.04.039.
doi: 10.3321/j.issn:0253-2670.2001.04.039 |
|
[3] | 谢明勇, 李磊. 青钱柳化学成分和生物活性研究概况[J]. 中草药, 2001, 32(4):365-366. |
XIE M Y, LI L. Review in studies on chemical constituents and bioactivities of Cyclocarya paliurus[J]. Chin Tradit Herb Drugs, 2001, 32(4):365-366. | |
[4] |
SUN C W, SHANG X L, DING H F, et al. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J]. J For Res, 2021, 32(2):805-814.DOI: 10.1007/s11676-020-01139-1.
doi: 10.1007/s11676-020-01139-1 |
[5] | 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1):95-100. |
FANG S Z, FU X X. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(1):95-100.DOI: 10.3969/j.issn.1000-2006.2007.01.023.
doi: 10.3969/j.issn.1000-2006.2007.01.023 |
|
[6] |
FANG S Z, YANG W X, CHU X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chem, 2011, 124(4):1382-1386.DOI: 10.1016/j.foodchem.2010.07.095.
doi: 10.1016/j.foodchem.2010.07.095 |
[7] | 尚旭岚, 李琼琼, 邓波, 等. 光照和施肥对青钱柳幼苗叶片性状与解剖结构的影响[J]. 西南林业大学学报, 2014, 34(6):9-15. |
SHANG X L, LI Q Q, DENG B, et al. Effects of light intensity and fertilization on leaf traits and anatomical structure of Cyclocarya paliurus[J]. J Southwest For Univ, 2014, 34(6):9-15.DOI: 10.3969/j.issn.2095-1914.2014.06.002.
doi: 10.3969/j.issn.2095-1914.2014.06.002 |
|
[8] | 邓波, 刘桂华, 余云云, 等. 遮荫和种源对青钱柳三萜类化合物积累的影响[J]. 生态学杂志, 2018, 37(2):383-390. |
DENG B, LIU G H, YU Y Y, et al. Effects of shading and provenance on triterpenoid accumulation in leaves of Cyclocarya paliurus[J]. Chin J Ecol, 2018, 37(2):383-390.DOI: 10.13292/j.1000-4890.201802.002.
doi: 10.13292/j.1000-4890.201802.002 |
|
[9] |
LIU Y, QIAN C, DING S, et al. Effect of light regime and provenance on leaf characteristics,growth and flavonoid accumulation in Cyclocarya paliurus (Batal) Iljinskaja coppices[J]. Bot Stud, 2016, 57(1):28.DOI: 10.1186/s40529-016-0145-7.
doi: 10.1186/s40529-016-0145-7 |
[10] | 李娜, 朱培林, 丰采, 等. 青钱柳嫁接愈合过程中砧穗生理特性及其与亲和性的关系[J]. 南京林业大学学报(自然科学版), 2021, 45(1):13-20. |
LI N, ZHU P L, FENG C, et al. Variation in physiological characteristics of rootstock-scion and its relationship to graft compatibility during the grafting union process of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):13-20.DOI: 10.12302/j.issn.1000-2006.202010024.
doi: 10.12302/j.issn.1000-2006.202010024 |
|
[11] | 田力, 徐骋炜, 尚旭岚, 等. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报(自然科学版), 2021, 45(1):21-28. |
TIAN L, XU C W, SHANG X L, et al. Evaluation and selection on superior individuals for medicinal use of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):21-28. DOI: 10. 12302/j. issn. 1000-2006.202002018.
doi: 10. 12302/j. issn. 1000-2006.202002018 |
|
[12] | 周永晟, 徐子恒, 袁发银, 等. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):29-35. |
ZHOU Y S, XU Z H, YUAN F Y, et al. Comparisons of community characteristics among three natural forests of Cyclocarya paliurus in the subtropical region of China[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1) : 29-35. DOI: 10.12302/j.issn.1000-2006.202005017.
doi: 10.12302/j.issn.1000-2006.202005017 |
|
[13] | 曹福亮, 汪贵斌, 郁万文. 银杏叶用林定向培育技术体系的集成[J]. 南京林业大学学报(自然科学版), 2014, 38(6):146-152. |
CAO F L, WANG G B, YU W W. Oriented cultivation techniques for leaf-harvest plantation of Ginkgo biloba L[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):146-152.DOI: 10.3969/j.issn.1000-2006.2014.06.028.
doi: 10.3969/j.issn.1000-2006.2014.06.028 |
|
[14] | 马顺兴, 丁欢欢, 刘慧东, 等. 杜仲短周期矮林地上部分生物量模型[J]. 福建农林大学学报(自然科学版), 2018, 47(6):681-685. |
MA S X, DING H H, LIU H D, et al. Biomass model of Eucommia ulmoides Oliver short rotation coppice[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018, 47(6):681-685.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.06.007.
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2018.06.007 |
|
[15] | 李巍, 王传宽, 张全智. 林木分化对兴安落叶松异速生长方程和生物量分配的影响[J]. 生态学报, 2015, 35(6):1679-1687. |
LI W, WANG C K, ZHANG Q Z. Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees[J]. Acta Ecol Sin, 2015, 35(6):1679-1687.DOI: 10.5846/stxb201403170466.
doi: 10.5846/stxb201403170466 |
|
[16] | 郑聪慧, 张鸿景, 王玉忠, 等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析[J]. 林业科学, 2019, 55(8):73-83. |
ZHENG C H, ZHANG H J, WANG Y Z, et al. An analysis of a regional trial of Larix principis-rupprechtii families based on BLUP and GGE biplot[J]. Sci Silvae Sin, 2019, 55(8):73-83.DOI: 10.11707/j.1001-7488.20190809.
doi: 10.11707/j.1001-7488.20190809 |
|
[17] | 薛立, 杨鹏. 森林生物量研究综述[J]. 福建林学院学报, 2004, 24(3):283-288. |
XUE L, YANG P. Summary of research on forest biomass[J]. J Fujian Coll For, 2004, 24(3):283-288.DOI: 10.3969/j.issn.1001-389X.2004.03.021.
doi: 10.3969/j.issn.1001-389X.2004.03.021 |
|
[18] | 李坚. 非采伐性的收获预测模型[J]. 浙江林学院学报, 1995, 12(4):353-359. |
LI J. Studies on soil microoganisms and biochemical properties in mixed forests of Chinese fir[J]. J Zhejiang For Coll, 1995, 12(4):353-359. | |
[19] | 周再如, 郑海水, 尹光天, 等. 橡胶树生物量估测数学模型[J]. 林业科学研究, 1995, 8(6):624-629. |
ZHOU Z R, ZHENG H S, YIN G T, et al. Biomass equations for rubber tree in southern China[J]. Forest Research, 1995, 8(6):624-629. DOI : 10.13275/j.cnki.lykxyj.1995.06.005.
doi: 10.13275/j.cnki.lykxyj.1995.06.005 |
|
[20] | 刘茂秀, 史军辉, 王新英, 等. 林分郁闭度和龄级对防护林碳汇功能及固碳价值的影响[J]. 东北林业大学学报, 2011, 39(6):30-32. |
LIU M X, SHI J H, WANG X Y, et al. Influences of crown density and age class on function and value of carbon sequestration of shelter forests in Jiashi County,Xinjiang[J]. J Northeast For Univ, 2011, 39(6):30-32.DOI: 10.13759/j.cnki.dlxb.2011.06.039.
doi: 10.13759/j.cnki.dlxb.2011.06.039 |
|
[21] | 徐美玲, 王俊峰, 胥辉, 等. 思茅松天然林空间结构与单木地上生物量分配关系[J]. 云南大学学报(自然科学版), 2020, 42(2):364-373. |
XU M L, WANG J F, XU H, et al. Relationship between spatial structure of Pinus kesiya var. langbianensis natural forest and the above-ground biomass of individual trees[J]. J Yunnan Univ (Nat Sci Ed), 2020, 42(2):364-373.DOI: 10.7540/j.ynu.20190410.
doi: 10.7540/j.ynu.20190410 |
|
[22] | 梁晓静, 梁文汇, 黄开顺, 等. 肉桂人工林生物量回归模型应用研究[J]. 中国农学通报, 2019, 35(35):40-44. |
LIANG X J, LIANG W H, HUANG K S, et al. Application study on biomass regression model of Cinnamamun cassia plantation[J]. Chin Agric Sci Bull, 2019, 35(35):40-44. | |
[23] | 刘坤, 曹林, 汪贵斌, 等. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4):12-20. |
LIU K, CAO L, WANG G B, et al. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. J Beijing For Univ, 2017, 39(4):12-20.DOI: 10.13332/j.1000-1522.20160374.
doi: 10.13332/j.1000-1522.20160374 |
|
[24] | 李轩然, 刘琪璟, 陈永瑞, 等. 千烟洲人工林主要树种地上生物量的估算[J]. 应用生态学报, 2006, 17(8):1382-1388. |
LI X R, LIU Q J, CHEN Y R, et al. Aboveground biomass of three conifers in Qianyanzhou plantation[J]. Chin J Appl Ecol, 2006, 17(8):1382-1388. | |
[25] | 向玮, 雷相东, 刘刚, 等. 近天然落叶松云冷杉林单木枯损模型研究[J]. 北京林业大学学报, 2008, 30(6):90-98. |
XIANG W, LEI X D, LIU G, et al. Individual tree mortality models for semi-natural larch-spruce-fir forests in Jilin Province,northeastern China[J]. J Beijing For Univ, 2008, 30(6):90-98. | |
[26] | 巨文珍, 王新杰, 孙玉军. 长白落叶松林龄序列上的生物量及碳储量分配规律[J]. 生态学报, 2011, 31(4):1139-1148. |
JU W Z, WANG X J, SUN Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J]. Acta Ecol Sin, 2011, 31(4):1139-1148. | |
[27] |
MOKANY K, RAISON R J, PROKUSHKIN A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Glob Change Biol, 2006, 12(1):84-96.DOI: 10.1111/j.1365-2486.2005.001043.x.
doi: 10.1111/j.1365-2486.2005.001043.x |
[28] | 黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3):966-975. |
HUANG C D, ZHANG J, YANG W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecol Sin, 2008, 28(3):966-975.DOI: 10.3321/j.issn:1000-0933.2008.03.008.
doi: 10.3321/j.issn:1000-0933.2008.03.008 |
|
[29] | 陈国鹏, 赵文智, 何世雄, 等. 沙柳丛生枝生物量最优分配与异速生长[J]. 中国沙漠, 2016, 36(2):357-363. |
CHEN G P, ZHAO W Z, HE S X, et al. Biomass allocation and allometric relationship in aboveground components of Salix psammophila branches[J]. J Desert Res, 2016, 36(2):357-363.DOI: 10.7522/j.issn.1000-694X.2015.00157.
doi: 10.7522/j.issn.1000-694X.2015.00157 |
|
[30] | 欧建德. 南方红豆杉人工林培育模式对生物量及其分配格局的影响[J]. 中国农学通报, 2016, 32(25):1-4. |
OU J D. Effects of cultivation pattern on biomass and allocation pattern of Taxus chinensis var. mairei plantation[J]. Chin Agric Sci Bull, 2016, 32(25):1-4. | |
[31] | 赵金龙, 王泺鑫, 韩海荣, 等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J]. 生态学报, 2014, 34(23):7026-7037. |
ZHAO J L, WANG L X, HAN H R, et al. Biomass and spatial distribution characteristics of Pinus tabulaeformis natural secondary forest at different age groups in the Liaoheyuan Nature Reserve,Hebei Province[J]. Acta Ecol Sin, 2014, 34(23):7026-7037.DOI: 10.5846/stxb201303060357.
doi: 10.5846/stxb201303060357 |
|
[32] | 吴旭东, 谢应忠, 徐坤, 等. 贺兰山东麓不同种植年限酿酒葡萄林生物量分配及估算模型[J]. 中国生态农业学报, 2012, 20(10):1322-1328. |
WU X D, XIE Y Z, XU K, et al. Biomass allocation and estimation model at different planting ages of wine grape forest in east Helan Mountain[J]. Chin J Eco Agric, 2012, 20(10):1322-1328.DOI: 10.3724/SP.J.1011.2012.01322.
doi: 10.3724/SP.J.1011.2012.01322 |
[1] | 张恒, 陈锐帆, 林嘉蓓, 邓小梅, 奚如春. 微量元素在林木中的应用研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 229-239. |
[2] | 熊光康, 厉月桥, 熊有强, 段爱国, 曹德春, 孙建军, 聂林芽, 盛炜彤. 低密度造林对杉木生长、形质和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 165-173. |
[3] | 王路君, 蔡春菊, 唐晓鹿, 范少辉. 硬头黄竹地上生物量分配特征及模型构建[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 189-196. |
[4] | 姚文静, 王茹, 林树燕, 王星, 杨蒙, 郑毅, 丁雨龙. 翠竹实生苗生长发育规律及构件生物量模型拟合研究[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 103-110. |
[5] | 张希金,冷寒冰,赵广琦,景军,涂爱翠,宋坤1,4*,达良俊1,3,4. 上海4种常见绿化树种地上生物量模型构建[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 141-146. |
[6] | 曾伟,江斌,余林,肖复明,徐海宁. 江西杉木人工林生物量分配格局及其模型构建[J]. 南京林业大学学报(自然科学版), 2016, 40(03): 177-182. |
[7] | 曹福亮,汪贵斌,郁万文. 银杏叶用林定向培育技术体系的集成[J]. 南京林业大学学报(自然科学版), 2014, 38(06): 146-152. |
[8] | 何列艳,亢新刚*,范小莉,高延,冯启祥. 长白山区林下主要灌木生物量估算与分析[J]. 南京林业大学学报(自然科学版), 2011, 35(05): 45-50. |
[9] | 黄文丁;黄宝龙. 林农复合系统中的种群共存增益和林分控制[J]. 南京林业大学学报(自然科学版), 1997, 21(02): 22-26. |
[10] | 骆林川. 预报林木生长的Kalman滤波器[J]. 南京林业大学学报(自然科学版), 1987, 11(04): 77-85. |
[11] | 朱明德. 林水生长“多对多”系统参数最小二乘辨识[J]. 南京林业大学学报(自然科学版), 1986, 10(01): 60-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||