大湄公河次区域植被覆盖时空变化特征及其与气象因子的关系

邱凤婷, 过志峰, 张宗科, 魏显虎, 李俊杰, 吕争

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 187-195.

PDF(7853 KB)
PDF(7853 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (2) : 187-195. DOI: 10.12302/j.issn.1000-2006.202010020
研究论文

大湄公河次区域植被覆盖时空变化特征及其与气象因子的关系

作者信息 +

Spatio-temporal change characteristics of vegetation coverage and its relationship with meteorological factors in the Greater Mekong Subregion

Author information +
文章历史 +

摘要

【目的】分析大湄公河次区域植被覆盖的时空分布变化规律及其与气象因子之间的关系,为全球变暖环境下大湄公河次区域植被保护及生态环境修复提供理论依据。【方法】以大湄公河次区域为研究区,使用MOD13Q1-NDVI数据,借助Google Earth Engine(GEE)平台反演区域2005—2019年植被覆盖,采用线性回归分析、马尔科夫模型等分析区域植被覆盖的时空分布规律,并利用偏相关分析法探究植被覆盖与气象因子之间的关系。【结果】大湄公河次区域高植被覆盖的面积占总面积的61.9%,空间上呈现北低南高、东高西低的特点;2005—2016年,区域植被以改善为主,主要是中高植被向高植被类型转化;2016—2019年,区域植被发生明显退化,以高覆盖植被类型退化为主;15年来,呈改善趋势的面积占总面积12.7%,呈退化趋势的面积占总面积3.0%,基于Hurst指数分析发现,区域植被未来显著改善面积大于显著退化,南部地区未来会发生退化;年际变化趋势上,归一化植被指数(NDVI)与气温呈显著正相关,相关系数为0.61,与降水相关性较弱;空间上,区域植被NDVI变化受到气温和降水影响,北部与降水显著负相关,南部与气温显著负相关。【结论】大湄公河次区域植被覆盖整体较好,改善趋势大于退化趋势。综合来看,大湄公河次区域植被变化与气温和降水有一定关系,尤其是北部和南部。

Abstract

【Objective】The aim of this reseach is to analyze the temporal and spatial distribution of vegetation coverage in the Greater Mekong Subregion (GMS), and the relationship between vegetation coverage and meteorological factors, so as to provide a theoretical basis for vegetation protection and ecological environment restoration in GMS under the background of global warming environment.【Method】Taking the GMS as the study area, based on MOD13Q1-NDVI data and Google Earth Engine (GEE) platform, the linear regression analysis and Markov model were employed to analyze the spatio-temporal change of its vegetation coverage from 2005 to 2019, and the partial correlation analysis was used to analyze the relationship between vegetation coverage and meteorological factors. 【Result】The 61.9% of the GMS was a high vegetation type, showing the characteristics of low in the north and high in the south, high in the east and low in the west. From 2005 to 2016, the vegetation was improved and mainly the medium-high vegetation transformed to the high vegetation. From 2016 to 2019, the vegetation degraded significantly, and mainly the high vegetation transformed to the low vegetation. In the past 15 years, 12.7% of the area in GMS showed an improvement trend, and 3.0% showed a degradation trend. Based on the overlay analysis of the trend change and Hurst index, the area of significant improvement on vegetation will be greater than a significant degradation in the future, and the vegetation coverage in the south of GMS will be degraded in the future. In terms of an interannual variation trend, normalized vegetation index (NDVI) was significantly positively correlated with temperature, with a correlation coefficient of 0.61, and weakly correlated with precipitation. Spatially, the change of NDVI was affected obviously by temperature and precipitation, and the north was significantly negatively correlated with precipitation, and the south was significantly negatively correlated with temperature.【Conclusion】The vegetation coverage in GMS is good in the whole, and the improvement trend is greater than the degradation. Generally speaking, the vegetation change in GMS is related to temperature and precipitation, especially in the north and south.

关键词

大湄公河次区域(GMS) / 植被覆盖 / 时空变化 / 气温 / 降水

Key words

Greater Mekong Subregion(GMS) / vegetation coverage / spatial and temporal change / temperature / precipitation

引用本文

导出引用
邱凤婷, 过志峰, 张宗科, . 大湄公河次区域植被覆盖时空变化特征及其与气象因子的关系[J]. 南京林业大学学报(自然科学版). 2022, 46(2): 187-195 https://doi.org/10.12302/j.issn.1000-2006.202010020
QIU Fengting, GUO Zhifeng, ZHANG Zongke, et al. Spatio-temporal change characteristics of vegetation coverage and its relationship with meteorological factors in the Greater Mekong Subregion[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 187-195 https://doi.org/10.12302/j.issn.1000-2006.202010020
中图分类号: TP79   

参考文献

[1]
孙红雨, 王长耀, 牛铮, 等. 中国地表植被覆盖变化及其与气候因子关系:基于NOAA时间序列数据分析[J]. 遥感学报, 1998(3):204-210,T001.
SUN H Y, WANG C Y, NIU Z, et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J]. J Remote Sensing, 1998(3):204-210,T001.
[2]
陈文静, 杨从从. 2001-2017年青海省NDVI时空变化特征及其对气候因子的响应[J]. 森林工程, 2020, 36(5):54-61.
CHEN W J, YANG C C. Spatiotemporal change characteristics of NDVI and its response to climate factors in Qinghai from 2001 to 2017[J]. Forest Engineering, 2020, 36(5): 54-61.
[3]
PENG J, LIU Z, LIU Y, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent[J]. Ecol Indic, 2012, 14(1):28-39. DOI: 10.1016/j.ecolind.2011.08.011.
[4]
ZHANG Z M, VAN C F, DE CLERCQ E M, et al. Mountain vegetation change quantification using surface landscape metrics in Lancang watershed,China[J]. Ecol Indic, 2013, 31(Complete):49-58. DOI: 10.1016/j.ecolind.2012.11.013.
[5]
GUTMAN G, IGNATOV A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. Int J Remote Sens, 1998, 19(8):1533-1543. DOI: 10.1080/014311698215333.
[6]
ANYAMBA A, TUCKER C J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003[J]. J Arid Environ, 2005, 63(3):596-614. DOI: 10.1016/j.jaridenv.2005.03.007.
[7]
贺振, 贺俊平. 基于SPOT-VGT的黄河流域植被覆盖时空演变[J]. 生态环境学报, 2012, 21(10):1655-1659.
HE Z, HE J P. Spatio-temporal variation of vegetation cover based on SPOT-VGT in Yellow River basin[J]. Ecol Environ Sci, 2012, 21(10):1655-1659. DOI: 10.16258/j.cnki.1674-5906.2012.10.001.
[8]
凌成星, 刘华, 纪平, 等. 基于无人机影像VDVI指数的植被覆盖度估算--以陕西神木防护林工程研究区为例[J]. 森林工程, 2021, 37(2):57-66.
LING C X, LIU H, JI P, et al. Estimation of vegetation coverage based on VDVI index of UAV visible image:using the Shelterbelt Research area as an example[J]. Forest Engineering, 2021, 37(2):57-66.
[9]
WEISS E, MARSH S E, PFIRMAN E S. Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands[J]. Int J Remote Sens, 2001, 22(6):1005-1027. DOI: 10.1080/014311601300074540.
[10]
WANG X, PIAO S L, CIAIS P, et al. Spring temperature change and its implication in the change of vegetation growth in north America from 1982 to 2006[J]. PNAS, 2011, 108(4):1240-1245. DOI: 10.1073/pnas.1014425108.
[11]
武正丽, 贾文雄, 赵珍, 等. 2000-2012年祁连山植被覆盖变化及其与气候因子的相关性[J]. 干旱区地理, 2015, 38(6):1241-1252.
WU Z L, JIA W X, ZHAO Z, et al. Spatial-temporal variations of vegetation and its correlation with climatic factors in Qilian Mountains from 2000 to 2012[J]. Arid Land Geogr, 2015, 38(6):1241-1252. DOI: 10.13826/j.cnki.cn65-1103/x.2015.06.017.
[12]
孙睿, 刘昌明, 朱启疆. 黄河流域植被覆盖度动态变化与降水的关系[J]. 地理学报, 2001, 56(6):667-672.
SUN R, LIU C M, ZHU Q J. Relationship between the fractional vegetation cover change and rainfall in the Yellow River basin[J]. Acta Geogr Sin, 2001, 56(6):667-672. DOI: 10.3321/j.issn:0375-5444.2001.06.005.
[13]
郭永强, 王乃江, 褚晓升, 等. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因[J]. 中国环境科学, 2019(11):4804-4811.
GUO Y Q, WANG N J, CHU X S, et al. Analyzing vegetation coverage changes and its reasons on the Loess Plateau based on Google Earth Engine[J]. China Environ Sci, 2019(11):4804-4811. DOI: 10.19674/j.cnki.issn1000-6923.2019.0560.
[14]
GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sens Environ, 2017, 202:18-27. DOI: 10.1016/j.rse.2017.06.031.
[15]
张滔, 唐宏. 基于Google Earth Engine的京津冀2001-2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4):593-599.
ZHANG T, TANG H. Vegetation cover change and urban expansion in Beijing-Tianjin-Hebei during 2001-2015 based on Google Earth Engine[J]. Remote Sens Technol Appl, 2018, 33(4):593-599. DOI: 10.11873/j.issn.1004-0323.2018.4.0593.
[16]
KAWABATA A, ICHII K, YAMAGUCHI Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation[J]. Int J Remote Sens, 2001, 22(7):1377-1382. DOI: 10.1080/01431160119381.
[17]
杨达, 李超. “一带一路”生态环境风险防范的绿色治理路径创新:以澜沧江-湄公河次区域为例[J]. 探索, 2019(5):184-193.
YANG D, LI C. Green governance innovation against eco-environmental risks of the Belt and Road Initiative: a case study of Lancang-Mekong River Subregion[J]. Probe, 2019(5):184-193. DOI: 10.16501/j.cnki.50-1019/d.2019.05.020.
[18]
赵桔超, 朱彦辉, 段国辉, 等. 基于MOD13Q1数据分析2001-2015年西双版纳植被变化特征[J]. 生态学杂志, 2019, 38(4):1083-1092.
ZHAO J C, ZHU Y H, DUAN G H, et al. Spatial and temporal dynamics of vegetation in Xishuangbanna from 2001 to 2015 based on MOD13Q1 data[J]. Chin J Ecol, 2019, 38(4):1083-1092. DOI: 10.13292/j.1000-4890.201904.016.
[19]
黄桂平, 曹艳萍. TRMM卫星3B43降水数据在黄河流域的精度分析[J]. 遥感技术与应用, 2019, 34(5):1111-1120.
HUANG G P, CAO Y P. Accuracy analysis of TRMM 3B43 precipitation data in the Yellow River basin[J]. Remote Sens Technol Appl, 2019, 34(5):1111-1120. DOI: 10.11873/j.issn.1004-0323.2019.5.1111.
[20]
赵虹. 全球林火斑块面积对植被绿度与地表温度的影响[D]. 太原:山西大学, 2019.
ZHAO H. Effects of global forest fire size on vegetation greenness and land surface temperature[D]. Taiyuan: Shanxi University, 2019. DOI: 10.27284/d.cnki.gsxiu.2019.001541.
[21]
王震, 闫文德, 刘曙光, 等. 基于MODIS数据的湖南省2001-2013年植被覆盖指数时空变化研究[J]. 中南林业科技大学学报, 2016, 36(11):41-46.
WANG Z, YAN W D, LIU S G, et al. Spatiotemporal change of vegetation cover in Hunan Province during 2001-2013[J]. J Central South Univ For Technol, 2016, 36(11):41-46. DOI: 10.14067/j.cnki.1673-923x.2016.11.008.
[22]
张成才, 娄洋, 李颖, 等. 基于像元二分模型的伏牛山地区植被覆盖度变化[J]. 水土保持研究, 2020, 27(3):301-307.
ZHANG C C, LOU Y, LI Y, et al. Change of vegetation coverage in Funiu mountain regions based on the dimidiate pixel model[J]. Res Soil Water Conserv, 2020, 27(3):301-307. DOI: 10.13869/j.cnki.rswc.2020.03.043.
[23]
刘明霞, 刘友存, 陈明, 等. 2000-2018年赣江上游植被覆盖度时空演化及其对气候变化的响应[J]. 水土保持通报, 2020, 40(5):284-290.
LIU M X, LIU Y C, CHEN M, et al. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang River basin during 2000-2018[J]. Bull Soil Water Conserv, 2020, 40(5):284-290. DOI: 10.13961/j.cnki.stbctb.2020.05.041.
[24]
王佃来, 宿爱霞, 刘文萍. 几种植被覆盖变化趋势分析方法对比研究[J]. 安徽农业科学, 2019, 47(5):10-14.
WANG D L, SU A X, LIU W P. Comparison study on several trend analytical methods of vegetation cover changes[J]. J Anhui Agric Sci, 2019, 47(5):10-14. DOI: 10.3969/j.issn.0517-6611.2019.05.003.
[25]
GONG P, WANG J, YU L, et al. Finer resolution observation and monitoring of global land cover:first mapping results with Landsat TM and ETM+ data[J]. Int J Remote Sens, 2013, 34(7):2607-2654. DOI: 10.1080/01431161.2012.748992.

编辑: 李燕文
PDF(7853 KB)

Accesses

Citation

Detail

段落导航
相关文章

/