南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3): 109-116.doi: 10.12302/j.issn.1000-2006.202101025
吕锋1(), 解孝满1,2, 韩彪2, 鲁仪增2, 王磊2, 董昕2, 王艳2, 陆璐2, 刘莉1, 宗绍宁2, 李文清1,2,*()
收稿日期:
2021-01-19
接受日期:
2021-07-13
出版日期:
2022-05-30
发布日期:
2022-06-10
通讯作者:
李文清
基金资助:
LYU Feng1(), XIE Xiaoman1,2, HAN Biao2, LU Yizeng2, WANG Lei2, DONG Xin2, WANG Yan2, LU Lu2, LIU Li1, ZONG Shaoning2, LI Wenqing1,2,*()
Received:
2021-01-19
Accepted:
2021-07-13
Online:
2022-05-30
Published:
2022-06-10
Contact:
LI Wenqing
摘要:
【目的】基于SSR分子标记对麻栎天然群体遗传多样性与遗传结构进行分析,为麻栎种质资源的保护和利用提供理论基础。【方法】以分布于我国7个省8个麻栎天然群体的150个个体为研究对象,利用筛选出的18对SSR引物,使用GenAIEx 6.51、MEGA 7.0.26和Structure 2.3.4等软件,采用AMOVA分析、主成分分析、聚类分析和Structure分析等方法,对麻栎群体及相应个体的遗传多样性、分子方差、遗传距离及遗传结构进行研究。【结果】18个SSR位点的等位基因数(Na)平均为5.625个,有效等位基因数(Ne)平均为4.104个,Shannon指数(I)平均为1.338,观测杂合度(Ho)平均为0.895,期望杂合度(He)平均为0.645,筛选出的18对麻栎SSR引物具有丰富的多态性。8个麻栎群体的遗传距离为0.222~1.587,遗传一致度为0.205~0.801,遗传分化系数(Fst)平均为0.252,基因流(Nm)平均为1.140,固定指数(F)均为负值且平均为-0.441。麻栎群体的遗传多样性水平较高,遗传分化小,且群体间存在杂合子剩余;其98%的变异来自群体内, 2%的变异来自群体间。UPGMA聚类分析、Structure分析均将8个群体分为2组,二者的个体组成成分存在一定差异;主成分分析结果与上述基本一致,存在一定的交叉引种及基因渐渗现象。【结论】麻栎群体遗传多样性水平较高,遗传分化水平较低,遗传差异主要存在于群体内部,并呈现出沿“西南—东北”方向地理变异规律。因此,对麻栎天然群体的保护应该采取原地保护和异地繁育保存相结合的措施。
中图分类号:
吕锋,解孝满,韩彪,等. 基于SSR标记的麻栎天然群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 109-116.
LYU Feng, XIE Xiaoman, HAN Biao, LU Yizeng, WANG Lei, DONG Xin, WANG Yan, LU Lu, LIU Li, ZONG Shaoning, LI Wenqing. Genetic diversity analyses of Quercus acutissima based on SSR markers[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(3): 109-116.DOI: 10.12302/j.issn.1000-2006.202101025.
表2
18对SSR引物序列信息"
位点 locus | 引物序列(5'-3') primer sequence(5'-3') | 退火温度/℃ annealing temperature | 位点 locus | 引物序列(5'-3') primer sequence(5'-3') | 退火温度/℃ annealing temperature |
---|---|---|---|---|---|
MSQ13 | F:TGGCTGCACCTATGGCTCTTAG R: ACACTCAGACCCACCATTTTTCC | 54 | QV11 | F:ACCAATGTGAAAAGGGAAG R:TGGGTTTGGTTTCTTCTTCT | 55 |
MSQ16 | F:GGAACAACTAGAGAGAAC R:TTGCCTATCCTGCCCCGTAT | 52 | QV12 | F:CAGCTCTGGATGGATATAATG R:ACATGCATGGAGAGAAATAGA | 55 |
QM58TGT | F:GGTCAGTGTATTTTGTTGGT R:AAATGTATTTTGCTTGCTCA | 52 | QV14 | F:AGAGCAATTCCCAACTAACTT R:TAGTTCAAGATCTGAGCCAAA | 55 |
QpZAG36 | F:GATCAAAATTTGGAATATTAAGAGAG R:ACTGTGGTGGTGAGTCT AACATGTAG | 57 | QrZAG112 | F:TTCTTGCTTTGGTGCGCG R:GTGGTCAGAGACTCGGTAAGTATTC | 45 |
QpZAG110 | F:GGAGGCTTCCTTCAACCTACT R:GATCTCTTGTGTGCTGTATTT | 49 | QV3 | F:TATCTTTTGTGGGGGAAGATA R:AGAAGGCCTCATCTTTCTTTA | 55 |
QrZAG7 | F:CAACTTGGTGTTCGGATCAA R:GTGCATTTCTTTTATAGCATTCAC | 51 | QV10 | F:TGCCTTATTGTTGATGCTG R:CAAAATCCAAAAGGCCAAAC | 55 |
QV4 | F:ATTCATTTTTCTCCACCAAA R:CCATTATGATTGGATTAGGG | 55 | GA-1H14 | F:GCTTGGGCTTGTTCCTACT R:CAACACTTCTCATGGATTAGAGA | 58 |
QV6 | F:CGCTTGCCACAATAGTAATAA R:AAGTACCAAAAATGACAATG | 55 | GA-Oi21 | F:ATATGGTCCCGATTAATTC R: GGGCAACATTCAAATGTATCTA | 50 |
QV8 | F:CCTGCTTCCAATATTCTCATA R:GCAAAATCACTCATCAAGAAC | 55 | QM67-3Ml | F:GCGTCGGTGGCGGCTTAGAGATT R: TGGCTTATCCAATGTTTGTGATT | 55 |
表3
18个SSR位点的遗传多样性、F检验及基因流估算"
位点 locus | 样本量 sample size | Na | Ne | I | Ho | He | F | Fst | Nm |
---|---|---|---|---|---|---|---|---|---|
QV8 | 5.500 | 3.625 | 2.675 | 0.985 | 0.742 | 0.514 | -0.484 | 0.399 | 0.377 |
QV10 | 9.750 | 5.500 | 3.733 | 1.312 | 0.875 | 0.629 | -0.458 | 0.298 | 0.589 |
MSQ13 | 3.000 | 3.125 | 2.771 | 0.911 | 0.750 | 0.495 | -0.583 | 0.437 | 0.323 |
MSQ16 | 9.375 | 9.875 | 6.944 | 2.025 | 1.000 | 0.841 | -0.193 | 0.070 | 3.312 |
QV11 | 8.625 | 4.500 | 3.429 | 1.292 | 1.000 | 0.691 | -0.473 | 0.175 | 1.176 |
QrZAG7 | 13.625 | 6.250 | 3.916 | 1.451 | 0.875 | 0.673 | -0.304 | 0.218 | 0.897 |
GA-1H14 | 5.750 | 7.250 | 5.889 | 1.654 | 0.875 | 0.719 | -0.224 | 0.229 | 0.842 |
QV6 | 2.750 | 2.875 | 2.217 | 0.852 | 0.625 | 0.448 | -0.397 | 0.511 | 0.240 |
QM67-3M1 | 8.750 | 2.000 | 1.778 | 0.632 | 0.875 | 0.444 | -0.974 | 0.288 | 0.619 |
QPZAG36 | 2.375 | 3.125 | 2.764 | 0.936 | 0.750 | 0.503 | -0.560 | 0.452 | 0.303 |
QRZAG112 | 11.625 | 4.875 | 3.670 | 1.356 | 1.000 | 0.711 | -0.432 | 0.134 | 1.620 |
QPZAG110 | 11.625 | 8.625 | 5.292 | 1.713 | 1.000 | 0.749 | -0.404 | 0.134 | 1.622 |
QV3 | 12.375 | 7.000 | 4.675 | 1.626 | 1.000 | 0.760 | -0.335 | 0.108 | 2.073 |
QV4 | 8.500 | 5.375 | 3.791 | 1.398 | 1.000 | 0.709 | -0.445 | 0.134 | 1.616 |
QM58TGT | 12.375 | 13.125 | 9.547 | 2.267 | 1.000 | 0.861 | -0.176 | 0.092 | 2.465 |
QV14 | 8.000 | 7.625 | 5.587 | 1.748 | 1.000 | 0.775 | -0.333 | 0.141 | 1.525 |
GA-Oi21b | 10.125 | 3.500 | 2.559 | 0.976 | 0.750 | 0.519 | -0.460 | 0.397 | 0.380 |
QV12 | 2.500 | 3.000 | 2.643 | 0.949 | 1.000 | 0.579 | -0.784 | 0.319 | 0.534 |
平均mean | 8.146 | 5.625 | 4.104 | 1.338 | 0.895 | 0.645 | -0.441 | 0.252 | 1.140 |
表4
麻栎群体遗传多样性"
群体 popula- tion | 样本量 sample size | Na | Ne | I | Ho | He | F | PPPL/% |
---|---|---|---|---|---|---|---|---|
HB | 12.833 | 6.611 | 4.497 | 1.483 | 0.944 | 0.696 | -0.403 | 94.44 |
HN | 5.111 | 5.278 | 4.080 | 1.427 | 0.944 | 0.696 | -0.389 | 94.44 |
JD | 7.611 | 6.333 | 4.586 | 1.514 | 1.000 | 0.724 | -0.437 | 100.00 |
JS | 3.611 | 4.333 | 3.595 | 1.202 | 0.833 | 0.600 | -0.432 | 83.33 |
LN | 13.778 | 7.333 | 5.162 | 1.569 | 0.944 | 0.711 | -0.372 | 94.44 |
LZN | 19.556 | 10.389 | 6.405 | 1.929 | 0.996 | 0.805 | -0.256 | 100.00 |
SX | 1.278 | 2.444 | 2.407 | 0.831 | 0.778 | 0.491 | -0.648 | 77.78 |
YN | 1.389 | 2.278 | 2.102 | 0.748 | 0.722 | 0.441 | -0.694 | 72.22 |
平均 mean | 8.146 | 5.625 | 4.104 | 1.338 | 0.895 | 0.645 | -0.441 | 89.58 |
表6
麻栎8个天然群体遗传相似度与遗传距离"
群体 population | HB | HN | JD | JS | LN | LZN | SX | YN |
---|---|---|---|---|---|---|---|---|
HB | — | 0.501 | 0.657 | 0.624 | 0.775 | 0.755 | 0.314 | 0.246 |
HN | 0.691 | — | 0.508 | 0.436 | 0.529 | 0.619 | 0.435 | 0.474 |
JD | 0.420 | 0.677 | — | 0.555 | 0.751 | 0.775 | 0.347 | 0.291 |
JS | 0.471 | 0.830 | 0.589 | — | 0.616 | 0.702 | 0.231 | 0.205 |
LN | 0.255 | 0.637 | 0.286 | 0.484 | — | 0.801 | 0.321 | 0.281 |
LZN | 0.281 | 0.480 | 0.255 | 0.354 | 0.222 | — | 0.413 | 0.343 |
SX | 1.159 | 0.833 | 1.057 | 1.465 | 1.135 | 0.885 | — | 0.311 |
YN | 1.403 | 0.746 | 1.235 | 1.587 | 1.271 | 1.071 | 1.167 | — |
[1] |
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the iaks:review of previous taxonomic schemes and synthesis of evolutionary patterns[C]// Oaks physiological ecology exploring functional diversity genus Quercus L. Switzerland: Springer International Publishing, 2017:13-38.DOI: 10.1007/978-3-319-69099-5_2.
doi: 10.1007/978-3-319-69099-5_2 |
[2] | 徐立安. 栎属群体与进化遗传研究进展[J]. 南京林业大学学报(自然科学版), 2002, 26(6):73-77. |
XU L A. Developments in population and evolutionary genetics within the genus Quercus L[J]. J Nanjing For Univ (Nat Sci Ed), 2002, 26(6):73-77.DOI: 10.3969/j.issn.1000-2006.2002.06.019.
doi: 10.3969/j.issn.1000-2006.2002.06.019 |
|
[3] | 刘志龙, 虞木奎, 唐罗忠, 等. 麻栎资源研究进展及开发利用对策[J]. 中国林副特产, 2009(6):93-96. |
LIU Z L, YU M K, TANG L Z, et al. Progress and utilization countermeasure of Quercus acutissima[J]. For Prod Speciality China, 2009(6):93-96.DOI: 10.3969/j.issn.1001-6902.2009.06.045.
doi: 10.3969/j.issn.1001-6902.2009.06.045 |
|
[4] | 袁久志, 孙启时. 麻栎叶的化学成分研究[J]. 沈阳药科大学学报, 1999, 16(1):60-62. |
YUAN J Z, SUN Q S. A study on the chemical constituents of the leaves of Quercus acutissima Carruth[J]. J Shenyang Pharm Univ, 1999, 16(1):60-62.DOI: 10.3969/j.issn.1006-2858.1999.01.015.
doi: 10.3969/j.issn.1006-2858.1999.01.015 |
|
[5] | 赵丹. 麻栎组培和扦插繁殖技术研究[D]. 南京: 南京林业大学, 2010. |
ZHAO D. The research of propagation technique of tissue culture and cutting of Quercus acutissima[D]. Nanjing: Nanjing Forestry University, 2010. | |
[6] | 董章凯, 邢世岩, 王亚明, 等. 麻栎半同胞家系苗期特性分析[J]. 东北林业大学学报, 2011, 39(4):27-28,36. |
DONG Z K, XING S Y, WANG Y M, et al. Seedling traits of Quercus acutissima from different half-sib families[J]. J Northeast For Univ, 2011, 39(4):27-28,36.DOI: 10.13759/j.cnki.dlxb.2011.04.036.
doi: 10.13759/j.cnki.dlxb.2011.04.036 |
|
[7] | 董玉峰. 麻栎群体内变异性和优良家系、无性系选择研究[D]. 泰安: 山东农业大学, 2008. |
DONG Y F. Study on variation among Quercus acutissima population and selection of its families and clones[D]. Taian: Shandong Agricultural University, 2008. | |
[8] | 叶青雷, 曾宪云. 麻栎SRAP-PCR体系优化与遗传多样性分析[J]. 生物技术, 2009, 19(3):24-27. |
YE Q L, ZENG X Y. Optimization of SRAP-PCR system and genetic diversity analysis in Quercus acutissima Carr[J]. Biotechnology, 2009, 19(3):24-27.DOI: 10.16519/j.cnki.1004-311x.2009.03.028.
doi: 10.16519/j.cnki.1004-311x.2009.03.028 |
|
[9] | 彭礼琼, 金则新, 祁彩虹, 等. 麻栎ISSR-PCR扩增条件的优化[J]. 江苏农业科学, 2011, 39(4):30-32. |
PENG L Q, JIN Z X, QI C H, et al. Optimization of ISSR-PCR amplification conditions of Quercus acutissima[J]. Jiangsu Agric Sci, 2011, 39(4):30-32.DOI: 10.15889/j.issn.1002-1302.2011.04.180.
doi: 10.15889/j.issn.1002-1302.2011.04.180 |
|
[10] | 孟旭. 麻栎的谱系地理学和遗传多样性研究[D]. 西安: 西北大学, 2017. |
MENG X. Study on phylogeography and population genetics structure of Quercus acutissima Carr[D]. Xi’an: Northwest University, 2017. | |
[11] | 徐小林, 徐立安, 黄敏仁, 等. 栓皮栎天然群体SSR遗传多样性研究[J]. 遗传, 2004, 26(5):683-688. |
XU X L, XU L A, HUANG M R, et al. Genetic diversity of microsatellites(SSRs)of natural populations of Quercus variabilis[J]. Hereditas, 2004, 26(5):683-688.DOI: 10.16288/j.yczz.2004.05.023.
doi: 10.16288/j.yczz.2004.05.023 |
|
[12] | 秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012, 34(2):61-65. |
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012, 34(2):61-65.DOI: 10.13332/j.1000-1522.2012.02.022.
doi: 10.13332/j.1000-1522.2012.02.022 |
|
[13] | 王雁红, 俞琦, 杨佳, 等. 基于核微卫星的短柄枹栎居群遗传多样性和遗传结构[J]. 林业科学, 2015, 51(12):121-131. |
WANG Y H, YU Q, YANG J, et al. Genetic diversity and population structure of Quercus serrata var.brevipetiolata revealed by nSSR markers[J]. Sci Silvae Sin, 2015, 51(12):121-131.DOI: 10.11707/j.1001-7488.20151215.
doi: 10.11707/j.1001-7488.20151215 |
|
[14] | 李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29-36. |
LI W Y, GU W C, ZHOU S L. AFLP analysis on genetic diversity of Quercus mongolica populations[J]. Sci Silvae Sin, 2003, 39(5):29-36.DOI: 10.3321/j.issn:1001-7488.2003.05.005.
doi: 10.3321/j.issn:1001-7488.2003.05.005 |
|
[15] | 陈怀琼, 隋春, 魏建和. 植物SSR引物开发策略简述[J]. 分子植物育种, 2009, 7(4):845-851. |
CHEN H Q, SUI C, WEI J H. Summary of strategies for developing SSR primer[J]. Mol Plant Breed, 2009, 7(4):845-851.DOI: 10.3969/mpb.007.000845.
doi: 10.3969/mpb.007.000845 |
|
[16] |
SULLIVAN A R, LIND J F, MCCLEARY T S, et al. Development and characterization of genomic and gene-based microsatellite markers in north American red oak species[J]. Plant Mol Biol Report, 2013, 31(1):231-239.DOI: 10.1007/s11105-012-0495-6.
doi: 10.1007/s11105-012-0495-6 |
[17] |
PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. DOI: 10.1093/bioinformatics/bts460.
doi: 10.1093/bioinformatics/bts460 |
[18] |
SLATKIN M, BARTON N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43(7):1349-1368. DOI: 10.2307/2409452.
doi: 10.2307/2409452 |
[19] |
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of Population structure using multilocus genotype data[J]. Genetics, 2000, 155(4):9197-9201. DOI: 10.1093/genetics/155.2.945.
doi: 10.1093/genetics/155.2.945 |
[20] |
SUDHIR K, GLEN S, KOICHIRO T. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mo Biol & Evol, 2016(7):1870. DOI: 10.1093/molbev/msw054.
doi: 10.1093/molbev/msw054 |
[21] | 张昊. 中国栎属麻栎组三个近缘物种的群体遗传学和种群动态历史研究[D]. 西安: 西北大学, 2018. |
ZHANG H. Study on population genetics and demographic history of the three closely related species of Section Aegilops occurred in China[D]. Xi’an: Northwest University, 2018. | |
[22] |
GAO J, LIU Z L, ZHAO W, et al. Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima[J]. J Syst Evol, 2021, 59(3):541-556.DOI: 10.1111/jse.12568.
doi: 10.1111/jse.12568 |
[23] | 杨梅, 张敏, 师守国, 等. 武当木兰种群遗传结构的ISSR分析[J]. 林业科学, 2014, 50(1):76-81. |
YANG M, ZHANG M, SHI S G, et al. Analysis of genetic structure of Magnolia sprengeri populations based on ISSR markers[J]. Sci Silvae Sin, 2014, 50(1):76-81.DOI: 10.11707/j.1001-7488.20140112.
doi: 10.11707/j.1001-7488.20140112 |
|
[24] | 巨苗苗. 基于SLAF-seq技术的高山栎组植物系统发育和群体遗传学研究[D]. 西安: 西北大学, 2020. |
JU M M. Research on the phylogeny and population genetics of Quercus Sect. Heterobalanus based on the SLAF-seq[D]. Xi’an: Northwest University, 2020. | |
[25] |
MURAWSKI D A, HAMRICK J L. The effect of the density of flowering individuals on the mating systems of nine tropical tree species[J]. Heredity, 1991, 67(2):167-174.DOI: 10.1038/hdy.1991.76.
doi: 10.1038/hdy.1991.76 |
[26] |
MURAWSKI D A, HAMRICK J L. The mating system of Cavanillesia platanifolia under extremes of flowering-tree density: a test of predictions[J]. Biotropica, 1992, 24(1):99.DOI: 10.2307/2388478.
doi: 10.2307/2388478 |
[27] |
文亚峰, UCHIYAMA K, 韩文军, 等. 微卫星标记中的无效等位基因[J]. 生物多样性, 2013, 21(1):117-126.
doi: 10.3724/SP.J.1003.2013.10133 |
WEN Y F, UCHIYAMA K, HAN W J, et al. Null alleles in microsatellite markers[J]. Biodivers Sci, 2013, 21(1):117-126.DOI: 10.3724/SP.J.1003.2013.10133.
doi: 10.3724/SP.J.1003.2013.10133 |
|
[28] |
JACQUEMYN H, HONNAY O, GALBUSERA P, et al. Genetic structure of the forest herb Primula elatior in a changing landscape[J]. Mol Ecol, 2004, 13(1):211-219.DOI: 10.1046/j.1365-294x.2003.02033.x.
doi: 10.1046/j.1365-294x.2003.02033.x. |
[29] |
KREMER A, PETIT R J. Gene diversity in natural populations of oak species[J]. Ann For Sci, 1993,50(Supplement):186s-202s.DOI: 10.1051/forest:19930717.
doi: 10.1051/forest:19930717 |
[30] | HAMRICK J, GODT M. Allozyme diversity in plant species[C]// BROWN A,CLEGG M.Plant population genetics, breeding and genetic resources, Sunderland M A: Sinauer, 1990:43-63. |
[31] | 伊贤贵, 陈洁, 尤禄祥, 等. 山樱花群体遗传多样性的SSR分析[J]. 南京林业大学学报(自然科学版), 2018, 42(5):25-31. |
YI X G, CHEN J, YOU L X, et al. Genetic divertsity of Cerasus serrulata populations assessed by SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):25-31.DOI: 10.3969/j.issn.1000-2006.201702036.
doi: 10.3969/j.issn.1000-2006.201702036 |
|
[32] | 臧明月, 李璇, 方炎明. 基于SSR标记的白栎天然居群遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1):63-69. |
ZANG M Y, LI X, FANG Y M. Genetic diversity analysis among natural populations of Quercus fabri based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):63-69.DOI: 10.12302/j.issn.1000-2006.202004049.
doi: 10.12302/j.issn.1000-2006.202004049 |
|
[33] |
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers[J]. Forests, 2017, 8(12):495.DOI: 10.3390/f8120495.
doi: 10.3390/f8120495 |
[34] | 徐小林. 栓皮栎群体遗传结构研究[D]. 南京: 南京林业大学, 2003. |
XU X L. Study on genetic structure of Quercus variabilis natural populations[D]. Nanjing: Nanjing Forestry University, 2003. |
[1] | 王芝懿, 李振芳, 彭婵, 陈英, 张新叶. 基于荧光SSR标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 61-69. |
[2] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[3] | 李惠芝, 关庆伟, 赵家豪, 李俊杰, 王磊, 李凤凤, 左兴平, 陈斌. 地形对麻栎人工林土壤肥力质量的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 161-168. |
[4] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[5] | 葛大朋, 任媛, 赵俊, 王玉婷, 刘学庆, 苑兆和. 西藏石榴野生群体的SSR遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 127-133. |
[6] | 何旭东, 郑纪伟, 教忠意, 窦全琴, 黄利斌. 基于SLAF-seq技术的舒玛栎群体遗传多样性与遗传结构分析[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 81-87. |
[7] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
[8] | 陈兴彬, 徐海宁, 肖复明, 孙世武, 娄永峰, 邹元熹, 徐小强. 陈山红心杉1.5代种子园遗传多样性和子代父本分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 87-92. |
[9] | 臧明月, 李璇, 方炎明. 基于SSR标记的白栎天然居群遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 63-69. |
[10] | 范洪旺, BUI Van Thang, 陶晓, 管致玮, 许克福. 城乡空间差异对麻栎林土壤活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 151-158. |
[11] | 乔东亚, 王鹏, 王淑安, 李林芳, 高露璐, 杨如同, 汪庆, 李亚. 基于SNP标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 18-25. |
[12] | 孙岩啸,王贤荣,孙蕾,贾明. 无花果栽培品种遗传多样性分析及SSR指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 197-202. |
[13] | 冯源恒,杨章旗,李火根,徐慧兰. 马尾松育种进程中的遗传增益与遗传多样性变化[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 196-200. |
[14] | 伊贤贵,陈洁,尤禄祥,从睿,王华辰,段一凡,王贤荣. 山樱花群体遗传多样性的SSR分析[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 25-31. |
[15] | 周长品,翁启杰,甘四明,姬红霞,陈升侃,王莉,李发根. 应用SNaPshot技术对桉树SNP的检测[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||