南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (3): 91-98.doi: 10.12302/j.issn.1000-2006.202105010
收稿日期:
2021-05-08
接受日期:
2021-10-14
出版日期:
2022-05-30
发布日期:
2022-06-10
通讯作者:
华建峰
基金资助:
LU Zhiguo(), HUA Jianfeng*(), YIN Yunlong, SHI Qin
Received:
2021-05-08
Accepted:
2021-10-14
Online:
2022-05-30
Published:
2022-06-10
Contact:
HUA Jianfeng
摘要:
【目的】通过研究盐胁迫下氮素形态对海滨木槿(Hibiscus hamabo)生长特性和生理指标的影响,探讨不同氮素形态营养供应下海滨木槿耐盐性差异及其机理,为提升盐碱地海滨木槿绿化应用技术提供依据。【方法】采集滨海盐土,设置对照、低、中和高4个盐胁迫处理水平,利用盆栽试验方法研究了不同氮素形态[铵态氮(
中图分类号:
芦治国,华建峰,殷云龙,等. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98.
LU Zhiguo, HUA Jianfeng, YIN Yunlong, SHI Qin. Effects of nitrogen form on growth and physiological characteristics of Hibiscus hamabo under salt stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(3): 91-98.DOI: 10.12302/j.issn.1000-2006.202105010.
表1
不同盐胁迫处理土壤初始理化性质"
处理 treatment | pH | 电导率/ (mS·cm-1) electrical conductivity | 总氮含量/ (mg·kg-1) total nitrogen content | 有机质 质量分数/% organic matter content | 速效钾含量/ (mg·kg-1) available phosphorus content | 速效磷含量/ (mg·kg-1) available potassium content |
---|---|---|---|---|---|---|
CK | 7.7±0.6 a | 0.28±0.02 d | 743.69±26.28 a | 0.91±0.02 a | 204.25±18.12 c | 2.71±0.21 c |
L | 7.8±0.4 a | 0.98±0.04 c | 516.27±17.33 b | 0.87±0.03 a | 224.37±23.13 c | 4.50±0.27 a |
M | 8.0±0.6 a | 1.32±0.06 b | 329.39±16.47 c | 0.64±0.02 b | 268.17±36.14 b | 4.25±0.32 a |
H | 8.1±0.4 a | 2.71±0.13 a | 147.58±11.37 d | 0.54±0.01 b | 457.29±39.36 a | 3.59±0.20 b |
表2
不同盐胁迫程度下氮素形态对海滨木槿生长特性与生物量的影响及其交互作用"
处理 treatment | 株高/cm plant height | 地径/mm basal diameter | 生物量/g biomass | |||
---|---|---|---|---|---|---|
叶 leaf | 茎 stem | 根 root | 整株 total | |||
CK | 59.0±4.2 Ba | 12.5±0.93 Aa | 7.1±0.35 Aa | 22.7±1.2 Aa | 16.5±1.2 Ca | 46.3±5.6 Ba |
CK+NH | 68.7±3.8 Aa | 12.7±0.68 Aa | 7.3±0.24 Aa | 24.6±1.6 Aa | 20.9±2.2 Ba | 52.8±4.3 Aa |
CK+NO | 63.0±4.3 ABa | 12.8±0.76 Aa | 6.6±0.63 Aa | 19.7±1.5 Bb | 23.1±2.6 Aab | 49.4±3.9 Bb |
L | 57.7±6.3 Ba | 11.8±0.39 Ba | 6.8±0.56 Aa | 20.4±2.1 Ba | 18.5±1.7 Ba | 45.7±2.8 Ba |
L+NH | 64.2±2.6 Aab | 11.8±0.48 Ba | 5.4±0.46 Bb | 22.0±2.6 ABa | 18.6±1.3 Ba | 46.0±3.7 Bb |
L+NO | 59.2±2.9 Bb | 13.1±0.96 Aa | 6.6±0.31 Aa | 25.6±3.4 Aa | 26.8±2.9 Aa | 59.0±6.3 Aa |
M | 46.5±3.3 Bb | 9.9±0.35 Bb | 4.4±0.21 Ab | 14.0±1.5 Bb | 16.4±1.7 Ba | 32.8±2.7 Cb |
M+NH | 60.0±5.1 Ab | 10.9±0.55 Ab | 4.6±0.31 Ab | 19.6±1.6 Ab | 14.4±1.3 Bb | 38.7±2.3 Bc |
M+NO | 63.5±5.3 Aa | 11.3±0.36 Ab | 4.8±0.27 Ab | 18.1±1.7 Ab | 20.2±2.3 Ab | 43.1±2.1 Ac |
氮素形态 nirtogen form | 0.024* | 0.009** | 0.031* | 0.033* | 0.024* | 0.015* |
盐分 salt | 0.002** | 0.019* | 0.076ns | 0.021* | 0.059ns | 0.043* |
氮素形态×盐分 nirtogen form×salt | 0.012* | 0.005** | 0.066ns | 0.018* | 0.017* | 0.024* |
表3
不同盐胁迫程度下氮素形态对海滨木槿叶绿素含量与光合特性的影响及其交互作用"
处理 treatment | Chl/ (mg·g-1) | Pn/ (μmol·m-2·s-1) | Gs/ (mol·m-2·s-1) | Tr/ (mmol·m-2·s-1) | WUE/ (mmol·mol-1) |
---|---|---|---|---|---|
CK | 0.81±0.07 Bb | 11.8±0.95 Ba | 0.15±0.01 Ba | 2.8±0.16 Ba | 4.2±0.32 Aa |
CK+NH | 1.17±0.09 Ab | 14.2±1.10 Aa | 0.25±0.01 Aa | 3.5±0.28 Aa | 4.0±0.28 Aa |
CK+NO | 1.24±0.10 Ab | 13.9±1.00 Aa | 0.22±0.01 Aa | 3.4±0.22 Aa | 4.0±0.32 Ab |
L | 0.83±0.06 Bb | 9.3±0.56 Cb | 0.11±0.01 Bb | 2.7±0.13 Aa | 3.4±0.28 Cb |
L+NH | 1.53±0.11 Aa | 11.2±0.86 Bb | 0.13±0.01 Bb | 2.8±0.18 Ab | 4.0±0.26 Ba |
L+NO | 1.48±0.12 Aa | 13.5±1.00 Aa | 0.20±0.01 Aa | 2.9±0.13 Aab | 4.6±0.33 Aa |
M | 1.29±0.09 Aa | 7.5±0.51 Cc | 0.05±0.00 Cc | 1.8±0.11 Bb | 4.1±0.27 Ba |
M+NH | 1.42±0.12 Aa | 10.2±0.83 Bb | 0.08±0.00 Bc | 2.1±0.13 Bc | 4.8±0.36 Ab |
M+NO | 1.47±0.13 Aa | 12.5±0.96 Aa | 0.17±0.00 Ab | 2.6±0.15 Ab | 4.8±0.45 Aa |
氮素形态nirtogen form | 0.018* | 0.012* | 0.016* | 0.004* | 0.006* |
盐分salt | 0.036* | 0.011* | 0.002** | 0.077* | 0.036* |
氮素形态×盐分 nirtogen form×salt | 0.023* | 0.027* | 0.001** | 0.071* | 0.043* |
表4
不同盐胁迫程度下氮素形态对海滨木槿各器官K+含量的影响及其交互作用"
处理 treatment | K+含量/(mg·g-1)K+ content | |||
---|---|---|---|---|
叶 leaf | 茎 stem | 根 root | 整株 total | |
CK | 11.2±1.30 Aa | 7.2±0.62 Aa | 9.7±0.61 Aa | 28.1±3.2 Aa |
CK+NH | 9.2±0.89 Ba | 5.5±0.41 Ba | 6.4±0.51 Ba | 21.1±2.2 Ba |
CK+NO | 11.6±0.97 Aa | 7.3±0.63 Aa | 8.8±0.33 Aa | 27.7±2.6 Aa |
L | 8.9±0.67 Ab | 7.4±0.55 Aa | 6.5±0.28 Ab | 22.8±1.9 Ab |
L+NH | 6.2±0.52 Bb | 5.7±0.41 Ba | 5.1±0.33 Bb | 17.0±1.8 Bb |
L+NO | 8.1±0.55 Ab | 7.2±0.33 Aa | 7.2±0.42 Ab | 22.5±2.3 Ab |
M | 6.5±0.43 Ac | 6.5±0.44 Aa | 4.7±0.36 Ac | 17.7±1.2 Ac |
M+NH | 5.4±0.39 Ab | 5.7±0.36 Aa | 4.4±0.31 Ac | 15.5±1.5 Bb |
M+NO | 5.9±0.44 Ac | 6.9±0.67 Aa | 4.8±0.36 Ac | 17.6±1.8 Ac |
氮素形态 nirtogen form | 0.119ns | 0.364ns | 0.024* | 0.011* |
盐分 salt | 0.002** | 0.017* | 0.005** | 0.022* |
氮素形态×盐分 nirtogen form×salt | 0.019* | 0.324ns | 0.009** | 0.007** |
[1] | 郭金博, 施钦, 熊豫武, 等. 盐碱混合胁迫对‘中山杉406’生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(1):61-68. |
GUO J B, SHI Q, XIONG Y W, et al. Effects of salt-alkaline mixed stress on growth and photosynthetic characteristics of Taxodium hybrid ‘Zhongshanshan 406’[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):61-68.DOI: 10.3969/j.issn.1000-2006.201805078.
doi: 10.3969/j.issn.1000-2006.201805078 |
|
[2] | 叶查龙, 颜斌, 申婷婷, 等. 转BpmiR156基因白桦株系的耐盐性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(6):147-151. |
YE Z L, YAN B, SHEN T T, et al. Analysis of salt tolerance in BpmiR156 overexpression Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):147-151.DOI: 10.3969/j.issn.1000-2006.201908006.
doi: 10.3969/j.issn.1000-2006.201908006 |
|
[3] |
HASSAN M J, SHAFI M, ZHANG G P, et al. The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form[J]. Plant Growth Regul, 2008, 54(2):125-132.DOI: 10.1007/s10725-007-9235-6.
doi: 10.1007/s10725-007-9235-6 |
[4] | 王磊, 隆小华, 郝连香, 等. 氮素形态对盐胁迫下菊芋幼苗PSⅡ光化学效率及抗氧化特性的影响[J]. 草业学报, 2012, 21(1):133-140. |
WANG L, LONG X H, HAO L X, et al. Effects of nitrogen form on the photochemical efficiency of PSⅡ and antioxidant characteristics of Jerusalem artichoke seedling under salt stress[J]. Acta Prataculturae Sin, 2012, 21(1):133-140. | |
[5] |
NATHAWAT N S, KUHAD M S, GOSWAMI C L, et al. Interactive effects of nitrogen source and salinity on growth indices and ion content of Indian mustard[J]. J Plant Nutr, 2007, 30(4):569-598.DOI: 10.1080/01904160701209329.
doi: 10.1080/01904160701209329 |
[6] |
SEHAR Z, MASOOD A, KHAN N A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress[J]. Environ Exp Bot, 2019, 161:277-289.DOI: 10.1016/j.envexpbot.2019.01.010.
doi: 10.1016/j.envexpbot.2019.01.010 |
[7] | 耿杰, 张琳捷, 岳小红, 等. 铵态氮和硝态氮调节盐胁迫豌豆幼苗生长和根系呼吸的作用[J]. 植物营养与肥料学报, 2018, 24(4):1001-1009. |
GENG J, ZHANG L J, YUE X H, et al. Effect of N H 4 +-N and N O 3 -[J]. J Plant Nutr Fertil, 2018, 24(4):1001-1009.DOI: 10.11674/zwyf.17314.
doi: 10.11674/zwyf.17314 |
|
[8] | 张晓果, 王丹英, 计成林, 等. 水稻氮素吸收利用研究进展[J]. 中国稻米, 2015, 21(5):13-19. |
ZHANG X G, WANG D Y, JI C L, et al. Nitrogen absorption and utilization on rice[J]. China Rice, 2015, 21(5):13-19.DOI: 10.3969/j.issn.1006-8082.2015.05.003.
doi: 10.3969/j.issn.1006-8082.2015.05.003 |
|
[9] | 刘梅, 郑青松, 刘兆普, 等. 盐胁迫下氮素形态对油菜和水稻幼苗离子运输和分布的影响[J]. 植物营养与肥料学报, 2015, 21(1):181-189. |
LIU M, ZHENG Q S, LIU Z P, et al. Effects of nitrogen forms on transport and accumulation of ions in canola(B.napus L.) and rice(Oryza sativa L.)under saline stress[J]. J Plant Nutr Fertil, 2015, 21(1):181-189. | |
[10] | 李会欣, 吴明, 方炎明, 等. NaCl胁迫对海滨木槿叶片生理特性的影响[J]. 植物资源与环境学报, 2010, 19(3):55-61. |
LI H X, WU M, FANG Y M, et al. Effect of NaCl stress on physiological characteristics of Hibiscus hamabo leaf[J]. J Plant Resour Environ, 2010, 19(3):55-61.DOI: 10.3969/j.issn.1674-7895.2010.03.009.
doi: 10.3969/j.issn.1674-7895.2010.03.009 |
|
[11] | 王小雪, 孙海菁, 刘芸, 等. 浓硫酸处理对海滨木槿10个家系种子萌发的影响[J]. 应用生态学报, 2012, 23(11):2968-2974. |
WANG X X, SUN H J, LIU Y, et al. Effects of treating with concentrated sulfuric acid on the seed germination of ten Hibiscus hamabo provenance families[J]. Chin J Appl Ecol, 2012, 23(11):2968-2974.DOI: 10.13287/j.1001-9332.2012.0449.
doi: 10.13287/j.1001-9332.2012.0449 |
|
[12] | 施钦, 包学文, 华建峰, 等. 干旱胁迫及复水对海滨木槿光合作用和生理特性的影响[J]. 应用生态学报, 2019, 30(8):2600-2606. |
SHI Q, BAO X W, HUA J F, et al. Effects of drought stress and recovery on photosynthesis and physiological characteristics of Hibiscus hamabo[J]. Chin J Appl Ecol, 2019, 30(8):2600-2606.DOI: 10.13287/j.1001-9332.201908.020.
doi: 10.13287/j.1001-9332.201908.020 |
|
[13] | 俞慈英, 徐树华. 海滨木槿的驯化及开发利用前景[J]. 林业科学研究, 1999, 12(2):210-213. |
YU C Y, XU S H. Domestication and exploiting perspective of Hibiscus hamabo[J]. For Res, 1999, 12(2):210-213. | |
[14] | 李红强, 姚荣江, 杨劲松, 等. 盐渍化对农田氮素转化过程的影响机制和增效调控途径[J]. 应用生态学报, 2020, 31(11):3915-3924. |
LI H Q, YAO R J, YANG J S, et al. Influencing mechanism of soil salinization on nitrogen transformation processes and efficiency improving methods for high efficient utilization of nitrogen in salinized farmland[J]. Chin J Appl Ecol, 2020, 31(11):3915-3924.DOI: 10.13287/j.1001-9332.202011.023.
doi: 10.13287/j.1001-9332.202011.023 |
|
[15] |
DOMENICANO S, COLL L, MESSIER C, et al. Nitrogen forms affect root structure and water uptake in the hybrid poplar[J]. New For, 2011, 42(3):347-362.DOI: 10.1007/s11056-011-9256-x.
doi: 10.1007/s11056-011-9256-x |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Analytical methods of soil agricultural chemistry[M]. Beijing: China Agriculture Scientech Press, 2000. | |
[17] | 吕伟仙, 葛滢, 吴建之, 等. 植物中硝态氮、氨态氮、总氮测定方法的比较研究[J]. 光谱学与光谱分析, 2004, 24(2):204-206. |
LÜ W X, GE Y, WU J Z, et al. Study on the method for the determination of nitric nitrogen,ammoniacal nitrogen and total nitrogen in plant[J]. Spectrosc Spectr Anal, 2004, 24(2):204-206.DOI: 10.3321/j.issn:1000-0593.2004.02.023.
doi: 10.3321/j.issn:1000-0593.2004.02.023 |
|
[18] | 金雅琴, 李冬林, 丁雨龙, 等. 盐胁迫对乌桕幼苗光合特性及叶绿素含量的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(1):29-33. |
JIN Y Q, LI D L, DING Y L, et al. Effects of salt stress on photosynthetic characteristics and chlorophyll content of Sapium sebiferum seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(1):29-33.DOI: 10.3969/j.issn.1000-2006.2011.01.007.
doi: 10.3969/j.issn.1000-2006.2011.01.007 |
|
[19] | 芦治国, 於朝广, 周冬琴, 等. 盐胁迫对木槿属两个外来种质生长及叶绿素含量影响[J]. 林业科技开发, 2012, 26(1):40-43. |
LU Z G, YU C G, ZHOU D Q, et al. Effects of NaCl stress on the growth and chlorophyll contents of two exotic germplasm of Hibiscus L[J]. China For Sci Technol, 2012, 26(1):40-43.DOI: 10.3969/j.issn.1000-8101.2012.01.011.
doi: 10.3969/j.issn.1000-8101.2012.01.011 |
|
[20] |
FARISSI M, MOURADI M, FARSSI O, et al. Variations in leaf gas exchange,chlorophyll fluorescence and membrane potential of Medicago sativa root cortex cells exposed to increased salinity: the role of the antioxidant potential in salt tolerance[J]. Arch Biol Sci, 2018, 70(3):413-423.DOI: 10.2298/abs171019001f.
doi: 10.2298/abs171019001f |
[21] |
ZHU J K. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71.DOI: 10.1016/s1360-1385(00)01838-0.
doi: 10.1016/s1360-1385(00)01838-0 |
[22] | 常丽丽, 彭存智, 王丹, 等. 盐芥叶片应答盐胁迫的蛋白质组学分析[J]. 江苏农业学报, 2022, 38(1):49-64. |
CHANG L L, PENG C Z, WANG D, et al. Proteomics analysis of Eutrema salsugineum leaves in response to salt stress[J]. Jiangsu J of Agr Sci, 2022, 38(1):49-64. DOI: 10.3969/j.issn.1000-4440.2022.01.006.
doi: 10.3969/j.issn.1000-4440.2022.01.006 |
|
[23] | 郭卫珍, 张亚利, 奉树成. NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J]. 江苏农业学报, 2021(3):562-569. |
GUO W Z, ZHANG Y L, FENG S C. Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J]. Jiangsu J of Agr Sci, 2021(3):562-569. DOI: 10.3969/j.issn.1000-4440.2021.03.003.
doi: 10.3969/j.issn.1000-4440.2021.03.003 |
|
[24] | 鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4):29-36. |
LU Q, YANG L, WANG H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. Elegans[J]. J Nanjing For Univ (Nat Sci Ed) 2020, 44(4):29-36.DOI: 10.3969/j.issn.1000-2006.201904035.
doi: 10.3969/j.issn.1000-2006.201904035 |
|
[25] |
WANG D, MAUGHAN M W, SUN J D, et al. Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus)[J]. GCB Bioenergy, 2012, 4(6):688-697.DOI: 10.1111/j.1757-1707.2012.01167.x.
doi: 10.1111/j.1757-1707.2012.01167.x. |
[26] | 邢瑶, 马兴华. 氮素形态对植物生长影响的研究进展[J]. 中国农业科技导报, 2015, 17(2):109-117. |
XING Y, MA X H. Research progress on effect of nitrogen form on plant growth[J]. J Agric Sci Technol, 2015, 17(2):109-117.DOI: 10.13304/j.nykjdb.2014.574.
doi: 10.13304/j.nykjdb.2014.574 |
|
[27] | 刘冉, 石峰, 刘伟成, 等. 不同形态氮素对盐胁迫下番茄细胞超微结构与光合作用的影响[J]. 园艺学报, 2015, 42(3):471-479. |
LIU R, SHI F, LIU W C, et al. Effect of nitrogen forms on cell ultrastructure and photosynthesis of tomato under salinity[J]. Acta Hortic Sin, 2015, 42(3):471-479.DOI: 10.16420/j.issn.0513-353x.2014-0821.
doi: 10.16420/j.issn.0513-353x.2014-0821 |
|
[28] | 陈军, 关欣, 范翠枝, 等. 盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响[J]. 土壤学报, 2021, 58(6):1598-1609. |
CHEN J, GUAN X, FAN C Z, et al. Effects of salt stress on form of polyamine and antioxidation in germinating tomato seed[J]. Acta Pedologica Sinica, 2021, 58(6):1598-1609. DOI: 10.11766/trxb202002180051.
doi: 10.11766/trxb202002180051 |
|
[29] |
MIFLIN B J, HABASH D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops[J]. J Exp Bot, 2002, 53(370):979-987.DOI: 10.1093/jexbot/53.370.979.
doi: 10.1093/jexbot/53.370.979 |
[30] |
TAKAHASHI R, NISHIO T, ICHIZEN N, et al. Cloning and functional analysis of the K+ transporter,PhaHAK2,from salt-sensitive and salt-tolerant reed plants[J]. Biotechnol Lett, 2007, 29(3):501-506.DOI: 10.1007/s10529-006-9246-9.
doi: 10.1007/s10529-006-9246-9 |
[31] | 田霄鸿, 李生秀, 王朝辉, 等. 莴笋对不同形态氮素的反应[J]. 应用生态学报, 2003, 14(3):377-381. |
TIAN X H, LI S X, WANG Z H, et al. Response of lettuce to different nitrogen forms[J]. Chin J Appl Ecol, 2003, 14(3):377-381. | |
[32] |
JONGBLOED R H, CLEMENT J M A M, BORST-PAUWELS G W F H. Kinetics of N H 4 + and K+ uptake by ectomycorrhizal fungi.Effect of N H 4 + on K+ uptake[J]. Physiol Plant, 1991, 83(3):427-432.DOI: 10.1111/j.1399-3054.1991.tb00116.x.
doi: 10.1111/j.1399-3054.1991.tb00116.x |
[33] | 于铁峰, 刘晓静, 张晓玲, 等. 氮素对紫花苜蓿根茎叶氮含量及硝酸还原酶活性的影响[J]. 草原与草坪, 2017, 37(5):14-20. |
YU T F, LIU X J, ZHANG X L, et al. Effects of nitrogen on nitrogen content and nitrate reductase activity in root stem and leaf of alfalfa[J]. Grassland Turf, 2017, 37(5):14-20.DOI: 10.13817/j.cnki.cyycp.2017.05.003.
doi: 10.13817/j.cnki.cyycp.2017.05.003 |
|
[34] |
ALLRED B J. Cation effects on nitrate mobility in an unsaturated soil[J]. Trans ASABE, 2008, 51(6):1997-2012.DOI: 10.13031/2013.25404.
doi: 10.13031/2013.25404 |
[35] | 李孝刚, 彭曙光, 靳志丽, 等. 有机物料对植烟土壤氮素矿化及微生物性质的影响[J]. 土壤学报, 2021, 58(1):225-234. |
LI X G, PENG S G, JIN Z L, et al. Effects of application of organic materials on nitrogen mineralization and microbial properties in tobacco planting soil[J]. Acta Pedologica Sinica, 2021, 58(1):225-234. DOI: 10.11766/trxb201907220320.
doi: 10.11766/trxb201907220320 |
|
[36] | 赵嫚, 陈仕勇, 李亚萍, 等. 外源GABA对盐胁迫下金花菜种子萌发及幼苗抗氧化能力的影响[J]. 江苏农业学报, 2021(2):310-316. |
ZHAO M, CHEN S Y, LI Y P, et al. Influence of γ-aminobutyric acid (GABA) on seed germination and antioxidant protection of Medicago polymorpha under salt stress[J]. Jiangsu J of Agr Sci, 2021(2):310-316. DOI: 10.3969/j.issn.1000-4440.2021.02.005.
doi: 10.3969/j.issn.1000-4440.2021.02.005 |
|
[37] | 代伟, 赵剑强, 丁家志, 等. 高盐高碱环境下硝化反硝化过程及N2O产生特征[J]. 环境科学, 2019, 40(8):3730-3737. |
DAI W, ZHAO J Q, DING J Z, et al., Nitrification,denitrification,and N2O production under saline and alkaline conditions[J]. Environ Sci, 2019, 40(8):3730-3737.DOI: 10.13227/j.hjkx.201811043.
doi: 10.13227/j.hjkx.201811043 |
[1] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[4] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
[5] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[6] | 韦忆, 韦小丽, 王明彬, 王嫚, 余大龙. 大气CO2浓度升高对红豆树苗木光合生理和形态的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 124-132. |
[7] | 梁文超, 步行, 罗思谦, 谢寅峰, 胡加玲, 张往祥. 施肥对增温促花后‘长寿冠’海棠叶片生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 114-120. |
[8] | 郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊. 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 87-96. |
[9] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
[10] | 王露露, 耿兴敏, 宦智群, 许世达, 赵晖. 1-MCP预处理对杜鹃花高温胁迫下光合特性及相关基因表达的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 103-113. |
[11] | 张银凤, 蔡洪月, 彭金根, 刘学军, 谢利娟, 张华, 王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 197-204. |
[12] | 孙晓伟, 王兴昌, 孙慧珍, 全先奎, 杨青杰. 雌雄异株树种山杨、水曲柳和东北红豆杉光合特性对比[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 129-135. |
[13] | 孔鑫, 王爱英, 郝广友, 宁秋蕊, 王淼, 殷笑寒, 周永姣. 水曲柳幼苗水力结构和光合生理对光强梯度变化的耦合响应[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 83-91. |
[14] | 李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟. 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 271-278. |
[15] | 苑景淇, 于忠亮, 兰雪涵, 李成宏, 田年军, 杜凤国. 遮阴对濒危植物朝鲜崖柏光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 58-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||