南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4): 212-220.doi: 10.12302/j.issn.1000-2006.202104048
收稿日期:
2021-04-28
修回日期:
2021-12-14
出版日期:
2022-07-30
发布日期:
2022-08-01
通讯作者:
包红光
基金资助:
HOU Xiujuan(), YAN Xiaoyun, WANG Bo, LI Xinyuan, BAO Hongguang()
Received:
2021-04-28
Revised:
2021-12-14
Online:
2022-07-30
Published:
2022-08-01
Contact:
BAO Hongguang
摘要:
【目的】观测北方干旱半干旱城市公园绿地不同植被结构空气负离子浓度与空气颗粒物浓度,并评价影响因素及其交互影响,为北方城市居民选择游憩时间及公园建设提供科学依据。【方法】于2020年7—8月,同步观测呼和浩特市敕勒川公园5种植被结构及对照点空气负离子浓度、空气颗粒物浓度,分析空气负离子与空气颗粒物变化特征及其影响因素。【结果】不同植被结构空气负离子浓度基本呈“V”形变化特征,空气颗粒物浓度最高值出现在早晨,最低值出现在下午;不同植被结构空气负离子浓度均值均高于对照点,且复层植被结构产生的负离子浓度要高于单层植被结构,不同植被结构对空气颗粒物浓度的调控存在着削减和集聚并存的效应;气象因子是影响空气负离子和空气颗粒物浓度的主要因素,风速与空气负离子浓度间显著负相关,温度与空气负离子浓度、总悬浮颗粒物(TSP)和PM10浓度间显著负相关,相对湿度与空气负离子浓度、TSP和PM10浓度间显著正相关,露点温度与PM2.5和PM1.0浓度间显著正相关;空气负离子浓度与PM1.0浓度间显著负相关。【结论】复层植被结构较单层植被结构对提高空气负离子浓度有更加显著的作用,疏密适当的植被对减少空气颗粒物浓度起到积极作用;依据观测结果,建议城市周边居民开展休闲娱乐活动的最佳时间选择在9:00—10:00和14:00—17:00。
中图分类号:
侯秀娟,闫晓云,王波,等. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 212-220.
HOU Xiujuan, YAN Xiaoyun, WANG Bo, LI Xinyuan, BAO Hongguang. Variation characteristics of the air anion and air particulate matter in arid and semi-arid urban park green spaces during summer[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(4): 212-220.DOI: 10.12302/j.issn.1000-2006.202104048.
表1
观测点5种结构植被基本情况"
观测点 observation point | 植被结构 vegetation structure | 主要植物种类 main plant species | 平均高/m average tree height | 平均胸径/cm average DBH | 乔木层树种组成比 proportion of tree species in tree layer | 郁闭度 canopy density | 叶面积指数 leaf area index |
---|---|---|---|---|---|---|---|
M1 | 乔木型 | 榆树(U. pumila) | 7.0±0.65 | 6.2±1.34 | 16:1:3:1:1:1 | 0.90±0.03 | 3.02±0.35 |
白皮松(Pinus bungeana) | 3.5±0.31 | 12.5±0.76 | |||||
云杉(Picae asperata) | 3.1±0.35 | 8.3±0.55 | |||||
国槐(S. japonica) | 5.6±0.78 | 7.7±1.21 | |||||
白杜(E. maackii) | 3.5±0.43 | 4.1±0.47 | |||||
紫叶李(Prunus cerasifera f. atropurpurea) | 3.0±0.20 | 2.6±0.18 | |||||
M2 | 乔灌型 | 新疆杨(Populus alba var. pyramidalis) | 12.2±1.65 | 12.5±0.58 | 1:2:5 | 0.32±0.06 | 1.32±0.26 |
国槐(S. japonica) | 5.6±1.13 | 8.4±0.64 | |||||
紫叶李(Prunus cerasifera f. atropurpurea) | 3.2±0.47 | 2.3±0.07 | |||||
小叶黄杨(B. sinica) | 0.8±0.09 | — | |||||
榆叶梅(A. triloba) | 0.8±0.14 | — | |||||
M3 | 乔草型 | 油松(Pinus tabuliformis) | 3.5±0.22 | 6.0±1.14 | 3:1:2:1:1:1:1 | 0.61±0.08 | 1.92±0.19 |
新疆杨(Populus alba var. pyramidalis) | 12.6±0.87 | 12.9±1.26 | |||||
国槐(S. japonica) | 5.3±0.61 | 8.7±0.67 | |||||
栾树(Koelreuteria paniculata) | 5.7±0.58 | 6.5±0.54 | |||||
白杜(E. maackii) | 3.5±0.37 | 4.0±0.57 | |||||
白蜡(Fraxinus chinensis) | 4.2±1.05 | 4.6±0.79 | |||||
五角枫(A. mono) | 4.0±0.78 | 4.3±1.03 | |||||
草地早熟禾(Poa pratensis) | — | — | |||||
M4 | 灌草型 | 连翘(F. suspensa) | 2.1±0.31 | — | — | — | 0.84±0.18 |
丁香(S. oblata) | 2.5±0.36 | — | |||||
草地早熟禾(P. pratensis) | — | — | |||||
M5 | 乔灌草型 | 油松(Pinus tabuliformis) | 3.5±0.64 | 6.8±0.36 | 4:1:2:3:1 | 0.76±0.04 | 2.28±0.32 |
新疆杨(Populus alba var. pyramidalis) | 11.4±0.98 | 12.3±1.26 | |||||
旱柳(Salix matsudana) | 8.6±0.62 | 6.4±0.77 | |||||
国槐(S. japonica) | 5.5±0.41 | 8.7±1.13 | |||||
白蜡(F. chinensis) | 4.3±0.56 | 4.2±0.45 | |||||
红瑞木(Cornus alba) | 2.1±0.09 | — | |||||
珍珠梅(Sorbaria sorbifolia) | 2.5±0.63 | — | |||||
丁香(S. oblata) | 2.6±0.36 | — | |||||
草地早熟禾(Poa pratensis) | — | — | |||||
CK | 对照 | 硬质铺装 | — | — | — | — | — |
表2
空气负离子等级及空气颗粒物污染评价"
评价等级 evaluation grade | 空气负离子ari anion | 空气颗粒物24 h平均浓度/(μg·m-3·h-1) average concentration of air particulate | ||||
---|---|---|---|---|---|---|
浓度/(ions·cm-3) concentraion | 生物学效应 biological effects | TSP | PM10 | PM2.5 | ||
Ⅰ | >3 000 | 保健浓度 | < 120 | <50 | <35 | |
Ⅱ | ≥2 000~3 000 | 保健浓度 | 120~130 | 50~150 | 35~75 | |
Ⅲ | ≥1 500~2 000 | 保健浓度 | >300 | >150 | >75 | |
Ⅳ | ≥1 000~1 500 | 保健浓度 | ||||
Ⅴ | ≥400~1 000 | 允许浓度 | ||||
Ⅵ | <400 | 临界浓度 |
表3
空气负离子浓度与影响因素之间的相关性"
因素factor | 空气负离子air anion | |
---|---|---|
R | P | |
风速 wind speed | -0.644* | 0.018 |
温度 temperature | -0.655* | 0.015 |
相对湿度 relative humidity | 0.568* | 0.043 |
露点温度dew-point temperature | -0.140 | 0.649 |
郁闭度canopy density | 0.129 | 0.871 |
叶面积指数leaf area index | -0.075 | 0.905 |
TSP浓度TSP mass concertration | 0.484 | 0.094 |
PM10浓度 PM10mass concertration | 0.069 | 0.823 |
PM2.5浓度 PM2.5mass concertration | -0.378 | 0.203 |
PM1.0浓度 PM1.0mass concertration | -0.595* | 0.023 |
表4
空气颗粒物质量浓度与影响因素之间的相关性"
空气颗粒物 air particulate | 风速 wind speed | 温度 temperature | 相对湿度 relative humidity | 露点温度 dew-point temperature | 郁闭度 canopy density | 叶面积指数 leaf area index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | R | P | R | P | |
TSP | -0.528 | 0.064 | -0.664* | 0.013 | 0.640* | 0.018 | 0.061 | 0.844 | 0.808 | 0.192 | 0.500 | 0.392 |
PM10 | -0.297 | 0.324 | -0.606* | 0.028 | 0.643* | 0.018 | 0.362 | 0.224 | 0.932 | 0.068 | 0.608 | 0.276 |
PM2.5 | 0.034 | 0.911 | -0.326 | 0.277 | 0.414 | 0.160 | 0.591* | 0.033 | 0.885 | 0.115 | 0.219 | 0.723 |
PM1.0 | 0.228 | 0.453 | -0.069 | 0.822 | 0.165 | 0.590 | 0.570* | 0.042 | 0.338 | 0.662 | -0.208 | 0.737 |
[1] | 栾博, 柴民伟, 王鑫. 绿色基础设施研究进展[J]. 生态学报, 2017, 37(15):5246-5261. |
LUAN B, CHAI M W, WANG X. Review of development,frontiers,and prospects of green infrastructure[J]. Acta Ecol Sin, 2017, 37(15):5246-5261.DOI:10.5846/stxb201605100903. | |
[2] | VAN OIJSTAEIJEN W, VAN PASSEL S, COOLS J. Urban green infrastructure:a review on valuation toolkits from an urban planning perspective[J]. J Environ Manag, 2020, 267:110603.DOI:10.1016/j.jenvman.2020.110603. |
[3] | 肖悦, 田永中, 许文轩, 等. 近10年中国空气质量时空分布特征[J]. 生态环境学报, 2017, 26(2):243-252. |
XIAO Y, TIAN Y Z, XU W X, et al. Spatiotemporal pattern changes of air quality in China from 2005 to 2015[J]. Ecol Environ Sci, 2017, 26(2):243-252.DOI:10.16258/j.cnki.1674-5906.2017.02.009. | |
[4] | 李卫兵, 邹萍. 空气污染与居民心理健康:基于断点回归的估计[J]. 北京理工大学学报(社会科学版), 2019, 21(6):10-21. |
LI W B, ZOU P. Air pollution and residents’ mental health: an estimation based on regression discontinuity[J]. J Beijing Inst Technol (Soc Sci Ed), 2019, 21(6):10-21.DOI:10.15918/j.jbitss1009-3370.2019.7156. | |
[5] | YANG Y, RUAN Z L, WANG X J, et al. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis[J]. Environ Pollut, 2019, 247:874-882.DOI:10.1016/j.envpol.2018.12.060. |
[6] | 王超, 张霖琳, 刀谞, 等. 京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源[J]. 中国环境科学, 2015, 35(1):1-6. |
WANG C, ZHANG L L, DAO X, et al. Pollution characteristics and source identification of polycyclic aromatic hydrocarbons in airborne particulates of Beijing-Tianjin-Hebei Region,China[J]. China Environ Sci, 2015, 35(1):1-6. | |
[7] | 王跃思, 李文杰, 高文康, 等. 2013—2017年中国重点区域颗粒物质量浓度和化学成分变化趋势[J]. 中国科学: 地球科学, 2020, 50(4): 453-468. |
WANG Y S, LI W J, GAO W K, et al. Trends in particulate matter and its chemical compositions in China from 2013-2017[J]. Sci Sin (Terrae), 2020, 50(4):453-468. DOI: 10.1360/N072018-00321. | |
[8] | 王永晓, 曹红英, 邓雅佳, 等. 大气颗粒物及降尘中重金属的分布特征与人体健康风险评价[J]. 环境科学, 2017, 38(9):3575-3584. |
WANG Y X, CAO H Y, DENG Y J, et al. Distribution and health risk assessment of heavy metals in atmospheric particulate matter and dust[J]. Environ Sci, 2017, 38(9):3575-3584.DOI:10.13227/j.hjkx.201702054. | |
[9] | 姜磊, 周海峰, 赖志柱, 等. 中国城市PM2.5时空动态变化特征分析:2015—2017年[J]. 环境科学学报, 2018, 38(10):3816-3825. |
JIANG L, ZHOU H F, LAI Z Z, et al. Analysis of spatio-temporal characteristic of PM2.5 concentrations of Chinese cities:2015—2017[J]. Acta Sci Circumstantiae, 2018, 38(10):3816-3825.DOI:10.13671/j.hjkxxb.2018.0211. | |
[10] | LI R, CUI L L, LI J L, et al. Spatial and temporal variation of particulate matter and gaseous pollutants in China during 2014-2016[J]. Atmos Environ, 2017, 161:235-246.DOI:10.1016/j.atmosenv.2017.05.008. |
[11] | LAZZERINI F T, ORLANDO M T, DE PRA W. Progress of negative air ions in health tourism environments applications[J]. Bol Soc Esp Hidrol Med, 2018, 33(1):27-46.DOI:10.23853/bsehm.2018.0450. |
[12] | 吴楚材, 郑群明, 钟林生. 森林游憩区空气负离子水平的研究[J]. 林业科学, 2001, 37(5):75-81. |
WU C C, ZHENG Q M, ZHONG L S. A study of the aero-anion concentration in forest recreation area[J]. Sci Silvae Sin, 2001, 37(5):75-81.DOI:10.3321/j.issn:1001-7488.2001.05.013. | |
[13] | WANG Y F, NI Z B, WU D, et al. Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen,China[J]. J For Res, 2020, 31(6):2537-2547.DOI:10.1007/s11676-019-01047-z. |
[14] | MIAO S, ZHANG X Y, HAN Y J, et al. Random forest algorithm for the relationship between negative air ions and environmental factors in an urban park[J]. Atmosphere, 2018, 9(12):463.DOI:10.3390/atmos9120463. |
[15] | 蒙晋佳, 张燕. 地面上的空气负离子主要来源于植物的尖端放电[J]. 环境科学与技术, 2005, 28(1):112-113,120. |
MENG J J, ZHANG Y. Electrical discharge of plant pointed ends: main source of air anions on ground[J]. Environ Sci Technol, 2005, 28(1):112-113,120.DOI:10.19672/j.cnki.1003-6504.2005.01.046. | |
[16] | JIANG S Y, MA A L, RAMACHANDRAN S. Plant-based release system of negative air ions and its application on particulate matter removal[J]. Indoor Air, 2021, 31(2):574-586.DOI:10.1111/ina.12729. |
[17] | 段敏杰, 王月容, 刘晶. 北京紫竹院公园绿地生态保健功能综合评价[J]. 生态学杂志, 2017, 36(7):1973-1983. |
DUAN M J, WANG Y R, LIU J. Comprehensive evaluation of ecological health functions of green space in Beijing Purple Bamboo Park[J]. Chin J Ecol, 2017, 36(7):1973-1983.DOI:10.13292/j.1000-4890.201707.031. | |
[18] | 石强, 钟林生, 吴楚材. 森林环境中空气负离子浓度分级标准[J]. 中国环境科学, 2002, 22(4):320-323. |
SHI Q, ZHONG L S, WU C C. Grades standard of air anion concentration in forest surroundings[J]. China Environ Sci, 2002, 22(4):320-323.DOI:10.3321/j.issn:1000-6923.2002.04.009. | |
[19] | 王薇. 空气负离子浓度分布特征及其与环境因子的关系[J]. 生态环境学报, 2014, 23(6):979-984. |
WANG W. Characteristics of negative air ion concentration and its relationships with environmental factors[J]. Ecol Environ Sci, 2014, 23(6):979-984.DOI:10.16258/j.cnki.1674-5906.2014.06.005. | |
[20] | 朱春阳, 纪鹏, 李树华. 城市带状绿地结构类型对空气质量的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(1):18-24. |
ZHU C Y, JI P, LI S H. Effects of the different structure of urban green belts on the air quality[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(1):18-24. DOI: 10.3969/j.issn.1000-2006.2013.01.003. | |
[21] | 潘剑彬, 董丽, 廖圣晓, 等. 北京奥林匹克森林公园空气负离子浓度及其影响因素[J]. 北京林业大学学报, 2011, 33(2):59-64. |
PAN J B, DONG L, LIAO S X, et al. Negative air ion concentration and affecting factors in Beijing Olympic Forest Park[J]. J Beijing For Univ, 2011, 33(2):59-64.DOI:10.13332/j.1000-1522.2011.02.005. | |
[22] | 王薇, 陈明. 城市绿地空气负离子和PM2.5浓度分布特征及其与微气候关系:以合肥天鹅湖为例[J]. 生态环境学报, 2016, 25(9):1499-1507. |
WANG W, CHEN M. Distribution characteristics of negative air ion and PM2.5 and their relationships with the microclimate in different urban green lands:case study of Hefei Swan Lake[J]. Ecol Environ Sci, 2016, 25(9):1499-1507.DOI:10.16258/j.cnki.1674-5906.2016.09.012. | |
[23] | 冯燕珠. 公园不同植物配置群落空气负离子变化特征研究[D]. 福州: 福建农林大学, 2018. |
FENG Y Z. Study on the variation characteristics of the negative air ions concentration in different plant configurations in the park[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. | |
[24] | LUO L H, SUN W, HAN Y J, et al. Importance evaluation based on random forest algorithms:insights into the relationship between negative air ions variability and environmental factors in urban green spaces[J]. Atmosphere, 2020, 11(7):706.DOI:10.3390/atmos11070706. |
[25] | 吴明作, 王江彦, 李小伟, 等. 郑州市公园绿地春季空气质量评价[J]. 西南林业大学学报, 2011, 31(3):22-26. |
WU M Z, WANG J Y, LI X W, et al. Study on air quality in park green-spaces of Zhengzhou City in the spring season[J]. J Southwest For Coll, 2011, 31(3):22-26.DOI:10.3969/j.issn.2095-1914.2011.03.005. | |
[26] | 何平, 常顺利, 张毓涛, 等. 新疆森林游憩区空气负离子浓度时空分布特征及其影响因素[J]. 资源科学, 2015, 37(3):629-635. |
HE P, CHANG S L, ZHANG Y T, et al. Spatiotemporal distribution and influence factors of negative air ion in forest recreation areas across Xinjiang[J]. Resour Sci, 2015, 37(3):629-635. | |
[27] | 关蓓蓓, 郑思俊, 崔心红, 等. 崇明岛不同生态用地空气负离子分布规律研究[J]. 西北林学院学报, 2016, 31(1):280-285. |
GUAN B B, ZHENG S J, CUI X H, et al. Variation of negative air ions in different ecological lands in Chongming Island[J]. J Northwest For Univ, 2016, 31(1):280-285.DOI:10.3969/j.issn.1001-7461.2016.01.49. | |
[28] | 林喜珀, 黄钰辉, 陈永聚, 等. 鹅凰嶂自然保护区空气负离子时空分布及其与环境因子的关系[J]. 林业与环境科学, 2016, 32(3):14-18. |
LIN X P, HUANG Y H, CHEN Y J, et al. Spatiotemporal distribution of negative air ion and its relationship with environmental factors in Ehuangzhang Nature Reserve[J]. Guangdong For Sci Technol, 2016, 32(3):14-18.DOI:10.3969/j.issn.1006-4427.2016.03.003. | |
[29] | 刘双芳, 张维康, 韩静波, 等. 不同植被结构对空气质量的调控功能[J]. 生态环境学报, 2020, 29(8):1602-1609. |
LIU S F, ZHANG W K, HAN J B, et al. Regulation of air quality by different vegetation structures in a green space[J]. Ecol Environ Sci, 2020, 29(8):1602-1609.DOI:10.16258/j.cnki.1674-5906.2020.08.011. | |
[30] | 郭二果, 王成, 郄光发, 等. 城市森林生态保健功能表征因子之间的关系[J]. 生态学杂志, 2013, 32(11):2893-2903. |
GUO E G, WANG C, QIE G F, et al. Relationships between the factors reflecting ecological health function of urban forests[J]. Chin J Ecol, 2013, 32(11):2893-2903.DOI:10.13292/j.1000-4890.2013.0444. | |
[31] | 冯鹏飞, 于新文, 张旭. 北京地区不同植被类型空气负离子浓度及其影响因素分析[J]. 生态环境学报, 2015, 24(5):818-824. |
FENG P F, YU X W, ZHANG X. Variations in negative air ion concentrations associated with different vegetation types and influencing factors in Beijing[J]. Ecol Environ Sci, 2015, 24(5):818-824.DOI:10.16258/j.cnki.1674-5906.2015.05.015. | |
[32] | 王华, 鲁绍伟, 李少宁, 等. 可吸入颗粒物和细颗粒物基本特征、监测方法及森林调控功能[J]. 应用生态学报, 2013, 24(3):869-877. |
WANG H, LU S W, LI S N, et al. Inhalable particulate matter and fine particulate matter:their basic characteristics,monitoring methods,and forest regulation functions[J]. Chin J Appl Ecol, 2013, 24(3):869-877.DOI:10.13287/j.1001-9332.2013.0232. | |
[33] | 邱玲, 刘芳, 张祥, 等. 城市公园不同植被结构绿地削减空气颗粒物浓度研究[J]. 环境科学研究, 2018, 31(10):1685-1694. |
QIU L, LIU F, ZHANG X, et al. Reducing effect of air particulate matter concentration by green spaces with different vegetation structure in city parks[J]. Res Environ Sci, 2018, 31(10):1685-1694.DOI:10.13198/j.issn.1001-6929.2018.06.29. | |
[34] | MITCHELL R, MAHER B A, KINNERSLEY R. Rates of particulate pollution deposition onto leaf surfaces:temporal and inter-species magnetic analyses[J]. Environ Pollut, 2010, 158(5):1472-1478.DOI:10.1016/j.envpol.2009.12.029. |
[35] | CHEN L X, LIU C M, ZOU R, et al. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment[J]. Environ Pollut, 2016, 208(A):198-208.DOI:10.1016/j.envpol.2015.09.006. |
[36] | 陈波, 李少宁, 鲁绍伟, 等. 北京大兴南海子公园PM2.5和PM10质量浓度变化特征[J]. 生态科学, 2016, 35(2):104-110. |
CHEN B, LI S N, LU S W, et al. Characteristics of mass concentration variations of PM10 and PM2.5 in Nanhaizi Park of Daxing in Beijing[J]. Ecol Sci, 2016, 35(2):104-110.DOI:10.14108/j.cnki.1008-8873.2016.02.016. | |
[37] | 王成, 郭二果, 郄光发. 北京西山典型城市森林内PM2.5动态变化规律[J]. 生态学报, 2014, 34(19):5650-5658. |
WANG C, GUO E G, QIE G F. Variations of PM2.5 in typical recreation forests in the West Mountain of Beijing,China[J]. Acta Ecol Sin, 2014, 34(19):5650-5658.DOI:10.5846/stxb201301180115. | |
[38] | QIN, HONG, JIANG, et al. The effect of vegetation enhancement on particulate pollution reduction:CFD simulations in an urban park[J]. Forests, 2019, 10(5):373.DOI:10.3390/f10050373. |
[39] | NGUYEN T, YU X X, ZHANG Z M, et al. Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves[J]. J Environ Sci, 2015, 27:33-41.DOI:10.1016/j.jes.2014.04.019. |
[40] | 赵松婷, 李新宇, 李延明, 等. 公园绿地及周边环境PM2.5浓度特征及影响因素[J]. 南京林业大学学报(自然科学版), 2017, 41(2):187-192. |
ZHAO S T, LI X Y, LI Y M, et al. Analysis of influence factors and characteristics of PM2.5 concentration in a public park and surroundings areas[J]. J Nanjing For Univ (Nat Sci Ed),2017, 41(2):187-192.DOI:10.3969/j.issn.1000-2006.2017.02.028. | |
[41] | 赵晨曦, 王玉杰, 王云琦, 等. 细颗粒物(PM2.5)与植被关系的研究综述[J]. 生态学杂志, 2013, 32(8):2203-2210. |
ZHAO C X, WANG Y J, WANG Y Q, et al. Interactions between fine particulate matter (PM2.5) and vegetation:a review[J]. Chin J Ecol, 2013, 32(8):2203-2210.DOI:10.13292/j.1000-4890.2013.0423. | |
[42] | LIU X H, YU X X, ZHANG Z M. PM2.5 concentration differences between various forest types and its correlation with forest structure[J]. Atmosphere, 2015, 6(11):1801-1815.DOI:10.3390/atmos6111801. |
[43] | ZHU C Y, PRZYBYSZ A, CHEN Y R, et al. Effect of spatial heterogeneity of plant communities on air PM10 and PM2.5 in an urban forest park in Wuhan,China[J]. Urban For Urban Green, 2019, 46:126487.DOI:10.1016/j.ufug.2019.126487. |
[44] | 马克明, 殷哲, 张育新. 绿地滞尘效应和机理评估进展[J]. 生态学报, 2018, 38(12):4482-4491. |
MA K M, YIN Z, ZHANG Y X. Advancement in the method and mechanism of the green space dust retention effect[J]. Acta Ecol Sin, 2018, 38(12):4482-4491.DOI:10.5846/stxb201801010001. |
[1] | 杨赫, 米锋. 社会经济地位下城市绿地可达性对居民心理健康的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 248-256. |
[2] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[3] | 陈建坤, 牟凤云, 张用川, 田甜, 王俊秀. 基于多机器学习模型的逐小时PM2.5浓度预测对比[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 152-160. |
[4] | 罗凤敏, 高君亮, 辛智鸣, 郝玉光, 李新乐, 段瑞兵. 乌兰布和沙漠绿洲防护林体系小气候效应研究[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 143-152. |
[5] | 黄雅茹, 辛智鸣, 李永华, 马迎宾, 董雪, 罗凤敏, 李新乐, 段瑞兵. 乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 131-139. |
[6] | 王雷, 徐家琛, 朱鹏飞, 李佳艳, 张恒. 呼和浩特市主要园林树种理化性质及燃烧性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 74-80. |
[7] | 叶洁楠,王浩. 城市公园绿地灾时避难功能结构和空间布局转换的可行性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 175-181. |
[8] | 关蓓蓓,郑思俊,崔心红. 城市人工林空气负离子变化特征及其主要影响因子[J]. 南京林业大学学报(自然科学版), 2016, 40(01): 73-79. |
[9] | 刘源,张凯云,王浩. 城市公园绿地整体性发展分析[J]. 南京林业大学学报(自然科学版), 2013, 37(06): 101-106. |
[10] | 朱春阳,纪鹏,李树华. 城市带状绿地结构类型对空气质量的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(01): 18-24. |
[11] | 陶宝先,张金池. 南京地区主要森林类型空气负离子变化特征[J]. 南京林业大学学报(自然科学版), 2012, 36(02): 147-150. |
[12] | KazuyoshiFUTAI. 对松萎蔫病的综合理解[J]. 南京林业大学学报(自然科学版), 2010, 34(01): 148-149. |
[13] | 曾曙才,苏志尧,陈北光. 我国森林空气负离子研究进展[J]. 南京林业大学学报(自然科学版), 2006, 30(05): 107-111. |
[14] | 王洪俊. 城市森林结构对空气负离子水平的影响[J]. 南京林业大学学报(自然科学版), 2004, 28(05): 96-98. |
[15] | 吴际友;程政红;龙应忠;童方平;宋庆安;刘云国. 园林树种林分中空气负离子水平的变化[J]. 南京林业大学学报(自然科学版), 2003, 27(04): 78-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||