山桐子IpSAD基因家族分析及功能鉴定

龚珏, 毕浩, 杨雯露, 王东明, 王乐辉, 姜渊忠, 马涛

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 261-270.

PDF(39815 KB)
PDF(39815 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 261-270. DOI: 10.12302/j.issn.1000-2006.202207034
研究论文

山桐子IpSAD基因家族分析及功能鉴定

作者信息 +

Characterization of IpSAD gene family in Idesia polycarpa and functional identification

Author information +
文章历史 +

摘要

【目的】硬脂酰-ACP Δ9脱氢酶(stearoyl-ACP Δ9 desaturase,SAD)是决定脂肪酸组成的关键酶,分离和鉴定木本油料植物山桐子(Idesia polycarpa)的SAD基因,可为遗传改良山桐子油的脂肪酸组成提供基因资源。【方法】 使用 HMM 和 Blastp 鉴定山桐子全基因组中的SAD家族成员;利用MEGA X、MEME和PlantCare等在线软件对其蛋白质理化性质、系统发育关系、基因结构、保守基序和启动子顺式调控元件等进行分析;使用MCSCANX分析山桐子和毛果杨SAD基因之间的共线性关系;基于RNA-seq数据,分析IpSAD各成员的表达模式,通过病毒诱导的基因沉默技术(virus induced gene silencing,VIGS)快速验证它们的生物学功能。【结果】 ①在山桐子基因组中共鉴定到7个IpSAD基因(IpSAD1~7),多重序列比对结果显示各成员间序列相似度较高且结构域保守;②系统发育分析表明,IpSAD成员可以分为3个亚组,与拟南芥SAD家族的分类结果一致,拟南芥单不饱和油酸合成关键基因AtSSI2与山桐子IpSAD2IpSAD3IpSAD4的亲缘关系较近;③启动子区域顺势调控元件预测结果显示IpSAD基因的启动子含有光反应、脱落酸响应等顺式调控元件;④IpSAD基因按其组织表达模式可分为3类,第1类和第2类成员在大部分组织中表达量较低,而第3类成员在所有组织中表达量均较高。⑤沉默IpSAD基因使叶片的油酸含量显著降低,其中IpSAD3的沉默可使油酸含量下降76%。【结论】 明确了IpSAD家族各成员的基本特征,确定了它们对于油酸合成的生物学功能,并为山桐子油脂生物合成调控机制研究奠定了基础。

Abstract

【Objective】Stearoyl-ACP Δ9 desaturase (SAD) is a key enzyme that determines the composition of fatty acids. The whole-genome identification of Idesia polycarpa SAD genes can provide targets to improve fatty acid compositions by genetic methods.【Method】HMM and Blastp were used to identify IpSAD genes in the I. polycarpa genome. The gene structures, phylogenetic relationship, conserved motifs, physicochemical characters of IpSADs, and cis-regulatory element in these gene promoters were analyzed and predicted by MEGA X, MEME and PlantCare online software, respectively. The MCSCANX software was used to reveal the common linear relationship of SAD genes in I. polycarpa and P. trichocarpa. The tissue expression pattern of IpSAD genes was constructed according to RNA-seq, and the function of these genes was identified by a virus-induced gene silencing (VIGS) system.【Result】(1)A total of seven IpSAD genes (IpSAD1-7) were identified in the I. polycarpa genome, and these family members shared high sequence similarity and conserved domains. (2)Aphylogenetic tree indicated that IpSAD members were divided into three clades, which were consistent with the classification of the homologs in Arabidopsis thaliana. In particular,IpSAD2, IpSAD3 and IpSAD4 were closer to AtSSI2, which is the key enzyme of oleic acid biosynthesis. (3)The cis-regulatory elements in the promoters of IpSAD genes included elements of light and abscisic acid responses. (4)These IpSAD genes were divided into three categories according to their tissue expression patterns. The IpSAD genes in Classes Ⅰ and Ⅱ were expressed with a low level in most tissues, whereas Class Ⅲ genes showed a high level in all tested tissues. (5) Silencing IpSAD genes using VIGS significantly reduced the oleic acid content of leaves.Remarkably, the oleic acid content in IpSAD3 silenced leaves was decreased by up to 76%.【Conclusion】The characteristics of each IpSAD gene was clarified, and their functions in oleic acid synthesis were determined. Our findings can aid in the investigation of the biosynthesis mechanisms of oleic acid and total oil in I. polycarpa.

关键词

山桐子 / 硬脂酰-ACP Δ9 / 油酸 / 病毒诱导基因沉默

Key words

Idesia polycarpa / stearoyl-acyl carrier protein Δ9 desaturase (SAD) / oleic acid / virus induced gene silencing(VIGS)

引用本文

导出引用
龚珏, 毕浩, 杨雯露, . 山桐子IpSAD基因家族分析及功能鉴定[J]. 南京林业大学学报(自然科学版). 2022, 46(6): 261-270 https://doi.org/10.12302/j.issn.1000-2006.202207034
GONG Jue, BI Hao, YANG Wenlu, et al. Characterization of IpSAD gene family in Idesia polycarpa and functional identification[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 261-270 https://doi.org/10.12302/j.issn.1000-2006.202207034
中图分类号: S722.37;Q78   

参考文献

[1]
ZHANG L, XI Z X, WANG M C, et al. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows[J]. Ecol Evol, 2018, 8(16):7817-7823.DOI:10.1002/ece3.4261.
[2]
LI M M, WANG D Y, ZHANG L, et al. Intergeneric relationships within the family Salicaceae s.l.based on plastid phylogenomics[J]. Int J Mol Sci, 2019, 20(15):E3788.DOI:10.3390/ijms20153788.
[3]
YANG F X, SU Y Q, LI X H, et al. Preparation of biodiesel from Idesia polycarpa var. vestita fruit oil[J]. Ind Crops Prod, 2009, 29(2/3):622-628.DOI:10.1016/j.indcrop.2008.12.004.
[4]
FAN R S, CAI G, ZHOU X Y, et al. Characterization of diacylglycerol acyltransferase 2 from Idesia polycarpa and function analysis[J]. Chem Phys Lipids, 2021, 234:105023.DOI:10.1016/j.chemphyslip.2020.105023.
[5]
COX C, MANN J, CHISHOLM A, et al. Effects of coconut oil,butter and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels[J]. Atherosclerosis, 1994, 109(1/2):146-147.DOI:10.1016/0021-9150(94)93598-X.
[6]
SIRI-TARINO P W, SUN Q, HU F B, et al. Saturated fatty acids and risk of coronary heart disease:modulation by replacement nutrients[J]. Curr Atheroscler Rep, 2010, 12(6):384-390.DOI:10.1007/s11883-010-0131-6.
[7]
RODRÍGUEZ M F R, SÁNCHEZ-GARCÍA A, SALAS J J, et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa,Macadamia tetraphylla and Dolichandra unguiscati[J]. J Plant Physiol, 2015, 178:35-42.DOI:10.1016/j.jplph.2015.01.013.
[8]
GE Y, CHANG Y, XU W L, et al. Sequence variations in the FAD2 gene in seeded pumpkins[J]. Genet Mol Res, 2015, 14(4):17482-17488.DOI:10.4238/2015.December.21.19.
[9]
FOX B G, SHANKLIN J, SOMERVILLE C, et al. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein[J]. Proc Natl Acad Sci USA, 1993, 90(6):2486-2490.DOI:10.1073/pnas.90.6.2486.
[10]
LIGHTNER J, WU J, BROWSE J. A mutant of Arabidopsis with increased levels of stearic acid[J]. Plant Physiol, 1994, 106(4):1443-1451.DOI:10.1104/pp.106.4.1443.
[11]
KNUTZON D S, THOMPSON G A, RADKE S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proc Natl Acad Sci USA, 1992, 89(7):2624-2628.DOI:10.1073/pnas.89.7.2624.
[12]
CRAIG W, LENZI P, SCOTTI N, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Res, 2008, 17(5):769-782.DOI:10.1007/s11248-008-9164-9.
[13]
HORIGUCHI G, IWAKAWA H, KODAMA H, et al. Expression of a gene for plastid w-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves[J]. Physiol Plant, 1996, 96(2):275-283.
[14]
WANG C, CHIN C K, CHEN A. Expression of the yeast Δ9 desaturase gene in tomato enhances its resistance to powdery mildew[J]. Physiol Mol Plant Pathol, 1998, 52(6):371-383.DOI:10.1006/pmpp.1998.0158.
[15]
SHAH J, KACHROO P, NANDI A, et al. A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens[J]. Plant J, 2001, 25:563-574.DOI:10.1046/j.1365-313x.2001.00992.x.
[16]
KACHROO A, LAPCHYK L, FUKUSHIGE H, et al. Plastidial fatty acid signaling modulates salicylic acid-and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant[J]. Plant Cell, 2003, 15(12):2952-2965.DOI:10.1105/tpc.017301.
[17]
KACHROO A, VENUGOPAL S C, LAPCHYK L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis[J]. PNAS, 2004, 101(14):5152-5157.DOI:10.1073/pnas.0401315101.
[18]
MADI L A, WANG X J, KOBILER I, et al. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression,fatty acid composition,antifungal diene level and resistance to Colletotrichum gloeosporioides attack[J]. Physiol Mol Plant Pathol, 2003, 62(5):277-283.DOI:10.1016/S0885-5765(03)00076-6.
[19]
KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096.
[20]
NICHOLAS K B. GeneDoc: analysis and visualization of genetic variation, EMBNEW[J]. Embnew News, 1997, 4. DOI:10.11118/actaun201361041061.
[21]
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
[22]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009.
[23]
SUN P C, JIAO B B, YANG Y Z, et al. WGDI:a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes[J]. BioRxiv, 2021, DOI:10.1101/2021.04.29.441969.
[24]
KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360.DOI:10.1038/nmeth.3317.
[25]
PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3):290-295.DOI:10.1038/nbt.3122.
[26]
段郅臻, 王童欣, 王健. VIGS技术在观赏植物花色研究上的应用[J]. 分子植物育种, 2021, 19(24):8170-8178.
DUAN Z Z, WANG T X, WANG J. Applications of virus-induced gene silencing(VIGS) technology in flower color research of ornamental plants[J]. Mol Plant Breed, 2021, 19(24):8170-8178.DOI:10.13271/j.mpb.019.008170.
[27]
YE J, QU J, BUI H T N, et al. Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing[J]. Plant Biotechnol J, 2009, 7(9):964-976.DOI:10.1111/j.1467-7652.2009.00457.x.
[28]
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8):911-917.DOI:10.1139/o59-099.
[29]
FOLCH J, LEES M, STANLEY G H S. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226(1):497-509.DOI:10.1016/S0021-9258(18)64849-5.
[30]
SCHNEIDER G, LINDQVIST Y, SHANKLIN J, et al. Preliminary crystallographic data for stearoyl-acyl carrier protein desaturase from castor seed[J]. J Mol Biol, 1992, 225(2):561-564.DOI:10.1016/0022-2836(92)90941-C.
[31]
LINDQVIST Y, HUANG W, SCHNEIDER G, et al. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins[J]. EMBO J, 1996, 15(16):4081-4092.
[32]
SONG N, HU Z R, LI Y H, et al. Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew[J]. Gene, 2013, 524(2):220-227.DOI:10.1016/j.gene.2013.04.019.
[33]
P R, WHETTEN R, CARDINAL A, et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition[J]. Theor Appl Genet, 2014, 127(2):349-358.DOI:10.1007/s00122-013-2223-5.
[34]
KACHROO A, SHANKLIN J, WHITTLE E, et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Mol Biol, 2007, 63(2):257-271.DOI:10.1007/s11103-006-9086-y.
[35]
ZHANG Y F, MAXIMOVA S N, GUILTINAN M J. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,Theobroma cacao L[J]. Front Plant Sci, 2015, 6:239.DOI:10.3389/fpls.2015.00239.
[36]
邓咪咪, 刘宝玲, 王志龙, 等. 大豆硬脂酰-ACP Δ9脱氢酶(GmSAD)基因家族的鉴定及功能分析[J]. 生物工程学报, 2020, 36(4):716-731.
DENG M M, LIU B L, WANG Z L, et al. Identification and functional analysis of soybean stearoyl-ACP Δ9 desaturase(GmSAD) gene family[J]. Chin J Biotechnol, 2020, 36(4):716-731.DOI:10.13345/j.cjb.190550.
[37]
SHANG X G, CHENG C Z, DING J, et al. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition[J]. Mol Genet Genomics, 2017, 292(1):173-186.DOI:10.1007/s00438-016-1265-1.
[38]
LANGE M, YELLINA A L, ORASHAKOVA S, et al. Virus-induced gene silencing (VIGS) in plants:an overview of target species and the virus-derived vector systems[J]. Methods Mol Biol (Clifton N J), 2013, 975:1-14.DOI:10.1007/978-1-62703-278-0_1.
[39]
ZHOU L N, ZHU C, FANG X J, et al. Gene duplication drove the loss of awn in sorghum[J]. Mol Plant, 2021, 14(11):1831-1845.DOI:10.1016/j.molp.2021.07.005.
[40]
ISHIKAWA A, KABEYA N, IKEYA K, et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes[J]. Science, 2019, 364(6443):886-889.DOI:10.1126/science.aau5656.

基金

国家重点研发计划(2021YFD2201100)
国家自然科学基金项目(31922061)

编辑: 吴祝华
PDF(39815 KB)

Accesses

Citation

Detail

段落导航
相关文章

/