基于基因组学的栎树生物学研究进展

方炎明, 朱福远, 李垚, 李璇

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 64-72.

PDF(1737 KB)
PDF(1737 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 64-72. DOI: 10.12302/j.issn.1000-2006.202208025
特邀专论

基于基因组学的栎树生物学研究进展

作者信息 +

Advances and prospects of oak biology based on genomics

Author information +
文章历史 +

摘要

栎树(Quercus spp.)是北半球重要的经济与生态树种。夏栎(Q. robur)、加州白栎(Q. lobata)、麻栎(Q. acutissima)等树种基因组的公布,对栎树生物学研究产生了深刻的影响。近5年来,栎树生物学出现了包括系统进化与物种鉴定、基因渐渗与适应进化、景观基因组学与生态保育、生物共存与互作机制、次生代谢与生长发育、DNA甲基化与表观遗传调控及基因与长寿机制等方面的研究热点。虽然基于基因组学的栎树生物学若干研究前沿已经形成,但尚处于起步阶段,笔者预期未来会向4个方面深入:①强调栎树基因组资源的深度应用。应用景观基因组学途径,探究栎树的杂交渐渗与适应进化;联合基因组、转录组、蛋白组等多组学技术,探究栎树生长发育与胁迫响应过程中的基因调控网络与信号通路;优化体细胞发生和遗传转化体系,攻克栎树遗传改良和基因资源开发技术瓶颈。②促进栎树研究体系的广度拓展。随着壳斗科其他树种全基因组序列的公布,基于从分子到群落的不同生物层次的模式系统,将对欧亚大陆和北美不同区域的栎树,包括白栎组、红栎组、冬青栎组、麻栎组等不同栎树类群,以及壳斗科其他属树种基因组生物学研究产生深远影响。③关注栎树资源利用的遗传与发育主题。用栎树基因组资源对其结构的、代谢的和农艺性状的差异及其优化加以解析,全基因组关联研究(GWAS)也将应用于栎树,从而为阐释木材发育和木栓形成的机制奠定基础。④聚焦栎林保育的生态与进化主题。在全球气候变化背景下,通过增加耐受胁迫的基因型,以缓解气候变化对森林生态系统的影响。同时维持和保护栎树在自然生态系统中的生态与进化过程,阐明栎树多样性、迁移与适应、趋异与趋同生态适应等方面进化成功的机制。

Abstract

Oaks are important economic and ecological tree species in the northern Hemisphere, and are colloquially known as the “tree of life” or the “frame of civilization”. The publication of several oak genomes, such as those of Quercus robur, Q. lobata and Q. acutissima, has a profound impact on oak biology. In the past five years,numerous topics in oak biology have been investigated, including the systematic evolution and species identification, gene introgression and adaptive evolution, landscape genomics and ecological conservation, biological coexistence and interaction mechanism, secondary metabolism and growth and development, DNA methylation and epigenetic regulation, genes and longevity mechanisms. The expected development trends include four aspects: highlighting the in-depth application of oak genome resources, promoting extension of oak study systems, emphasizing topics in genetics and development for utilization of oak resources, and highlighting themes in ecology and evolution for conservation of oak forests.

关键词

栎树 / 基因组 / 基因渐渗 / 景观基因组学 / 资源保育

Key words

oak / genome / gene introgression / landscape genomics / resource conservation

引用本文

导出引用
方炎明, 朱福远, 李垚, . 基于基因组学的栎树生物学研究进展[J]. 南京林业大学学报(自然科学版). 2022, 46(6): 64-72 https://doi.org/10.12302/j.issn.1000-2006.202208025
FANG Yanming, ZHU Fuyuan, LI Yao, et al. Advances and prospects of oak biology based on genomics[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 64-72 https://doi.org/10.12302/j.issn.1000-2006.202208025
中图分类号: S718   

参考文献

[1]
LEROY T, LOUVET J M, LALANNE C, et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks[J]. New Phytol, 2020, 226(4):1171-1182.DOI:10.1111/nph.16095.
[2]
PLOMION C, AURY J M, AMSELEM J, et al. Decoding the oak genome:public release of sequence data,assembly,annotation and publication strategies[J]. Mol Ecol Resour, 2016, 16(1):254-265.DOI:10.1111/1755-0998.12425.
[3]
PLOMION C, AURY J M, AMSELEM J, et al. Oak genome reveals facets of long lifespan[J]. Nat Plants, 2018, 4(7):440-452.DOI:10.1038/s41477-018-0172-3.
[4]
SORK V L, FITZ-GIBBON S T, PUIU D, et al. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae)[J]. G3 ( Bethesda), 2016, 6(11):3485-3495.DOI:10.1534/g3.116.030411.
[5]
SORK V L, COKUS S J, FITZ-GIBBON S T, et al. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks[J]. Nat Commun, 2022, 13(1):2047.DOI:10.1038/s41467-022-29584-y.
[6]
FU R R, ZHU Y X, LIU Y, et al. Genome-wide analyses of introgression between two sympatric Asian oak species[J]. Nat Ecol Evol, 2022, 6(7):924-935.DOI:10.1038/s41559-022-01754-7.
[7]
郑万钧. 中国树木志(第2卷)[M]. 北京: 中国林业出版社,1985.
[8]
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks:review of previous taxonomic schemes and synthesis of evolutionary patterns[M]// Tree Physiology. Cham: Springer International Publishing, 2017:13-38.DOI:10.1007/978-3-319-69099-5_2.
[9]
KREMER A, CASASOLI M, BARRENECHE T, et al. Fagaceae trees[M]//Forest Trees.Berlin, Heidelberg:Springer, 2007:161-187.DOI:10.1007/978-3-540-34541-1_5.
[10]
WEI G M, LI X, FANG Y M. Sympatric genome size variation and hybridization of four oak species as determined by flow cytometry genome size variation and hybridization[J]. Ecol Evol, 2021, 11(4):1729-1740.DOI:10.1002/ece3.7163.
[11]
BODÉNÈS C, CHANCEREL E, EHRENMANN F, et al. High-density linkage mapping and distribution of segregation distortion regions in the oak genome[J]. DNA Res, 2016, 23(2):115-124.DOI:10.1093/dnares/dsw001.
[12]
RAMOS A M, USIÉ A, BARBOSA P, et al. The draft genome sequence of cork oak[J]. Sci Data, 2018, 5:180069.DOI:10.1038/sdata.2018.69.
[13]
AI W F, LIU Y Q, MEI M, et al. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica)[J]. Mol Ecol Resour, 2022, 22(6):2396-2410.DOI:10.1111/1755-0998.13616.
[14]
HIPP A L, MANOS P S, GONZÁLEZ-RODRÍGUEZ A, et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity[J]. New Phytol, 2018, 217(1):439-452.DOI:10.1111/nph.14773.
[15]
DENG M, JIANG X L, HIPP A L, et al. Phylogeny and biogeography of east Asian evergreen oaks (Quercus Section Cyclobalanopsis;Fagaceae):insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia[J]. Mol Phylogenetics Evol, 2018, 119:170-181.DOI:10.1016/j.ympev.2017.11.003.
[16]
HIPP A L, MANOS P S, HAHN M, et al. Genomic landscape of the global oak phylogeny[J]. New Phytol, 2020, 226(4):1198-1212.DOI:10.1111/nph.16162.
[17]
MANOS P S, HIPP A L. An updated infrageneric classification of the north American oaks (Quercus subgenus Quercus):review of the contribution of phylogenomic data to biogeography and species diversity[J]. Forests, 2021, 12(6):786.DOI:10.3390/f12060786.
[18]
YANG Y C, ZHOU T, QIAN Z Q, et al. Phylogenetic relationships in Chinese oaks (Fagaceae,Quercus):evidence from plastid genome using low-coverage whole genome sequencing[J]. Genomics, 2021, 113(3):1438-1447.DOI:10.1016/j.ygeno.2021.03.013.
[19]
PANG X B, LIU H S, WU S R, et al. Species identification of oaks (Quercus L.,Fagaceae) from gene to genome[J]. Int J Mol Sci, 2019, 20(23):5940.DOI:10.3390/ijms20235940.
[20]
LI Y, WANG L, ZHANG X W, et al. Extensive sharing of chloroplast haplotypes among east Asian Cerris oaks:the imprints of shared ancestral polymorphism and introgression[J]. Ecol Evol, 2022, 12(8):e9142.DOI:10.1002/ece3.9142.
[21]
CANNON C H, PETIT R J. The oak syngameon:more than the sum of its parts[J]. New Phytol, 2020, 226(4):978-983.DOI:10.1111/nph.16091.
[22]
DEGEN B, YANBAEV Y, MADER M, et al. Impact of gene flow and introgression on the range wide genetic structure of Quercus robur (L.) in Europe[J]. Forests, 2021, 12(10): 1425. DOI:10.3390/f12101425.
[23]
LEROY T, PLOMION C, KREMER A. Oak symbolism in the light of genomics[J]. New Phytol, 2020, 226(4):1012-1017. DOI: 10.1111/nph.15987.
[24]
NAGAMITSU T, UCHIYAMA K, IZUNO A, et al. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var.crispula in northern Japan[J]. New Phytol, 2020, 226(4):1018-1028.DOI:10.1111/nph.16131.
[25]
KHODWEKAR S, GAILING O. Evidence for environment-dependent introgression of adaptive genes between two red oak species with different drought adaptations[J]. Am J Bot, 2017, 104(7):1088-1098.DOI:10.3732/ajb.1700060.
[26]
LIND-RIEHL J, GAILING O. Adaptive variation and introgression of a CONSTANS-like gene in north American red oaks[J]. Forests, 2016, 8(1):3.DOI:10.3390/f8010003.
[27]
ORTEGO J, GUGGER P F, SORK V L. Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus)[J]. New Phytol, 2018, 218(2):804-818.DOI:10.1111/nph.14951.
[28]
LÓPEZ D E HEREDIA U, SÁNCHEZ H, SOTO A. Molecular evidence of bidirectional introgression between Quercus suber and Quercus ilex[J]. IForest, 2018, 11(2):338-343.DOI:10.3832/ifor2570-011.
[29]
LI X, WEI G M, EL-KASSABY Y A, et al. Hybridization and introgression in sympatric and allopatric populations of four oak species[J]. BMC Plant Biol, 2021, 21(1):266.DOI:10.1186/s12870-021-03007-4.
[30]
LI Y, ZHANG X W, WANG L, et al. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China[J]. Ann Bot, 2022, 129(2):231-245.DOI:10.1093/aob/mcab140.
[31]
BUCK R, FLORES-RENTERÍA L. The syngameon Enigma[J]. Plants (Basel), 2022, 11(7):895.DOI:10.3390/plants11070895.
[32]
BOECKLEN W J. Topology of syngameons[J]. Ecol Evol, 2017, 7(24):10486-10491.DOI:10.1002/ece3.3507.
[33]
SUAREZ-GONZALEZ A, LEXER C, CRONK Q C B. Adaptive introgression:a plant perspective[J]. Biol Lett, 2018, 14(3):20170688.DOI:10.1098/rsbl.2017.0688.
[34]
BURGARELLA C, BARNAUD A, KANE N A, et al. Adaptive introgression:an untapped evolutionary mechanism for crop adaptation[J]. Front Plant Sci, 2019, 10:4.DOI:10.3389/fpls.2019.00004.
[35]
BUFFALO V, COOP G. Estimating the genome-wide contribution of selection to temporal allele frequency change[J]. Proc Natl Acad Sci USA, 2020, 117(34):20672-20680.DOI:10.1073/pnas.1919039117.
[36]
SALEH D, CHEN J, LEPLÉ J C, et al. Genome-wide evolutionary response of European oaks during the Anthropocene[J]. Evol Lett, 2022, 6(1):4-20.DOI:10.1002/evl3.269.
[37]
LIANG Y Y, SHI Y, YUAN S, et al. Linked selection shapes the landscape of genomic variation in three oak species[J]. New Phytol, 2021, 233(1):555-568.DOI:10.1111/nph.17793.
[38]
BALKENHOL N, DUDANIEC R Y, KRUTOVSKY K V, et al. Landscape genomics:understanding relationships between environmental heterogeneity and genomic characteristics of populations[M]// Population Genomics. Cham: Springer International Publishing, 2017:261-322.DOI:10.1007/13836_2017_2.
[39]
STORFER A, PATTON A, FRAIK A K. Navigating the interface between landscape genetics and landscape genomics[J]. Front Genet, 2018, 9:68.DOI:10.3389/fgene.2018.00068.
[40]
FENG L, DU F K. Landscape genomics in tree conservation under a changing environment[J]. Front Plant Sci, 2022, 13:822217.DOI:10.3389/fpls.2022.822217.
[41]
DU F K, WANG T R, WANG Y Y, et al. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak,Quercus aquifolioides[J]. Evol Appl, 2020, 13(9):2377-2391.DOI:10.1111/eva.13030.
[42]
GUGGER P F, FITZ-GIBBON S T, ALBARRÁN-LARA A, et al. Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales[J]. Mol Ecol, 2021, 30(2):406-423.DOI:10.1111/mec.15731.
[43]
VANHOVE M, PINA-MARTINS F, COELHO A C, et al. Using gradient forest to predict climate response and adaptation in Cork oak[J]. J Evol Biol, 2021, 34: 910-923. DOI: 10.1111/jeb.13765.
[44]
SORK V L, AITKEN S N, DYER R J, et al. Putting the landscape into the genomics of trees:approaches for understanding local adaptation and population responses to changing climate[J]. Tree Genet Genomes, 2013, 9(4):901-911.DOI:10.1007/s11295-013-0596-x.
[45]
BROWNE L, WRIGHT J W, FITZ-GIBBON S, et al. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow[J]. Proc Natl Acad Sci USA, 2019, 116(50):25179-25185.DOI:10.1073/pnas.1908771116.
[46]
MARTINS K, GUGGER P F, LLANDERAL-MENDOZA J, et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa[J]. Evol Appl, 2018, 11(10):1842-1858.DOI:10.1111/eva.12684.
[47]
GAO J, LIU Z L, ZHAO W, et al. Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima[J]. J Syst Evol, 2021, 59(3):541-556.DOI:10.1111/jse.12568.
[48]
PINA-MARTINS F, BAPTISTA J, PAPPAS G J, et al. New insights into adaptation and population structure of cork oak using genotyping by sequencing[J]. Glob Change Biol, 2018, 25(1):337-350.DOI:10.1111/gcb.14497.
[49]
ZHOU B F, SHI Y, CHEN X Y, et al. Linked selection,ancient polymorphism,and ecological adaptation shape the genomic landscape of divergence in Quercus dentata[J]. J Sytematics Evolution, 2022, 19.DOI:10.1111/jse.12817.
[50]
TEDERSOO L, BRUNDRETT M C. Evolution of ectomycorrhizal symbiosis in plants[M]// Biogeography of Mycorrhizal Symbiosis. Cham: Springer International Publishing, 2017:407-467.DOI:10.1007/978-3-319-56363-3_19.
[51]
BOUFFAUD M L, HERRMANN S, TARKKA M T, et al. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi[J]. BMC Genomics, 2020, 21(1):399.DOI:10.1186/s12864-020-06806-5.
[52]
ABDELFATTAH A, WISNIEWSKI M, SCHENA L, et al. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root[J]. Environ Microbiol, 2021, 23(4):2199-2214.DOI:10.1111/1462-2920.15392.
[53]
FORT T, PAUVERT C, ZANNE A E, et al. Maternal effects shape the seed mycobiome in Quercus petraea[J]. New Phytol, 2021, 230(4):1594-1608.DOI:10.1111/nph.17153.
[54]
U’REN J M, ZIMMERMAN N B. Oaks provide new perspective on seed microbiome assembly[J]. New Phytol, 2021, 230(4):1293-1295.DOI:10.1111/nph.17305.
[55]
PASCUAL-ALVARADO E, CASTILLEJOS-LEMUS D E, CUEVAS-REYES P, et al. Diversity of galls induced by wasps (Hymenoptera:Cynipidae,Cynipini) associated with oaks (Fagaceae:Quercus) in Mexico[J]. Bot Sci, 2017, 95(3):461.DOI:10.17129/botsci.1215.
[56]
SCHULTZ J C, STONE G N. A tale of two tissues:probing gene expression in a complex insect-induced gall[J]. Mol Ecol, 2022, 31(11):3031-3034.DOI:10.1111/mec.16482.
[57]
HEARN J, BLAXTER M, SCHÖNROGGE K, et al. Genomic dissection of an extended phenotype:oak galling by a cynipid gall wasp[J]. PLoS Genet, 2019, 15(11):e1008398.DOI:10.1371/journal.pgen.1008398.
[58]
MARTINSON E O, WERREN J H, EGAN S P. Tissue-specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasite-specific organ[J]. Mol Ecol, 2022, 31(11):3228-3240.DOI:10.1111/mec.16159.
[59]
LEBOLDUS J M, NAVARRO S M, KLINE N, et al. Repeated emergence of sudden oak death in Oregon:chronology,impact,and management[J]. Plant Dis, 2022:2022Apr29.DOI:10.1094/PDIS-02-22-0294-FE.
[60]
GALLARDO A, MORCUENDE D, SOLLA A, et al. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: crosstalk between defoliation and Phytophthora cinnamomi infection[J]. Physiol Plant, 2019, 165(2):319-329.DOI:10.1111/ppl.12848.
[61]
BARTHOLOMÉ J, BRACHI B, MARÇAIS B, et al. The genetics of exapted resistance to two exotic pathogens in pedunculate oak[J]. New Phytol, 2020, 226(4):1088-1103.DOI:10.1111/nph.16319.
[62]
COELHO A C, PIRES R, SCHÜTZ G, et al. Disclosing proteins in the leaves of cork oak plants associated with the immune response to Phytophthora cinnamomi inoculation in the roots:a long-term proteomics approach[J]. PLoS One, 2021, 16(1):e0245148.DOI:10.1371/journal.pone.0245148.
[63]
CRISTINA A C, SCHÜTZ G. Protein markers for the identification of cork oak plants infected with Phytophthora cinnamomi by applying an (α,β)-k-feature set approach[J]. Forests, 2022, 13(6):940.DOI:10.3390/f13060940.
[64]
CUNHA E, SILVA M, CHAVES I, et al. iEC7871 Quercus suber model:the first multi-tissue diel cycle genome-scale metabolic model of a woody tree[J]. bioRxiv, 2021, DOI:10.1101/2021.03.09.434537.
[65]
LEAL A R, SAPETA H, BEECKMAN T, et al. Spatiotemporal development of suberized barriers in cork oak taproots[J]. Tree Physiol, 2021, 42(6):1269-1285.DOI:10.1093/treephys/tpab176.
[66]
LOPES S T, SOBRAL D, COSTA B, et al. Phellem versus xylem:genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak[J]. Tree Physiol, 2019, 40(2):129-141.DOI:10.1093/treephys/tpz118.
[67]
FERNÁNDEZ-PIÑÁN S, BOHER P, SOLER M, et al. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation[J]. Sci Rep, 2021, 11:12053.DOI:10.1038/s41598-021-90938-5.
[68]
LIN L M, GUO H Y, SONG X, et al. Adaptive evolution of Chalcone isomerase superfamily in Fagaceae[J]. Biochem Genet, 2021, 59(2):491-505.DOI:10.1007/s10528-020-10012-z.
[69]
MOSELER A, SELLES B, ROUHIER N, et al. Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak[J]. New Phytol, 2020, 226(4):967-977.DOI:10.1111/nph.15870.
[70]
ZHANG J, LIN L M, CHENG W W, et al. Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L[J]. J Appl Genetics, 2021, 62(4):559-570.DOI:10.1007/s13353-021-00650-3.
[71]
GUGGER P F, FITZ-GIBBON S, PELLEGRINI M, et al. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients[J]. Mol Ecol, 2016, 25(8):1665-1680.DOI:10.1111/mec.13563.
[72]
BROWNE L, MEAD A, HORN C, et al. Experimental DNA demethylation associates with changes in growth and gene expression of oak tree seedlings[J]. G3 Genes|Genomes|Genetics, 2020, 10(3):1019-1028.DOI:10.1534/g3.119.400770.
[73]
SILVA H G, SOBRAL R S, MAGALHÃES A P, et al. Genome-wide identification of epigenetic regulators in Quercus suber L[J]. Int J Mol Sci, 2020, 21(11):3783.DOI:10.3390/ijms21113783.
[74]
INÁCIO V, BARROS P M, COSTA A, et al. Differential DNA methylation patterns are related to phellogen origin and quality of Quercus suber cork[J]. PLoS One, 2017, 12(1):e0169018.DOI:10.1371/journal.pone.0169018.
[75]
BROWNE L, MACDONALD B, FITZ-GIBBON S, et al. Genome-wide variation in DNA methylation predicts variation in leaf traits in an ecosystem-foundational oak species[J]. Forests, 2021, 12(5):569.DOI:10.3390/f12050569.
[76]
ROSSI F, CRNJAR A, COMITANI F, et al. Extraction and high-throughput sequencing of oak heartwood DNA:assessing the feasibility of genome-wide DNA methylation profiling[J]. PLoS One, 2021, 16(11):e0254971.DOI:10.1371/journal.pone.0254971.
[77]
MUNNÉ-BOSCH S. Limits to tree growth and longevity[J]. Trends Plant Sci, 2018, 23(11):985-993.DOI:10.1016/j.tplants.2018.08.001.
[78]
TOBIAS P A, GUEST D I. Tree immunity:growing old without antibodies[J]. Trends Plant Sci, 2014, 19(6):367-370.DOI:10.1016/j.tplants.2014.01.011.
[79]
SCHMID-SIEGERT E, SARKAR N, ISELI C, et al. Low number of fixed somatic mutations in a long-lived oak tree[J]. Nat Plants, 2017, 3(12):926-929.DOI:10.1038/s41477-017-0066-9.
[80]
CHEN M X, ZHANG Y J, FERNIE A R, et al. SWATH-MS-based proteomics:strategies and applications in plants[J]. Trends Biotechnol, 2021, 39(5):433-437.DOI:10.1016/j.tibtech.2020.09.002.
[81]
MARTÍNEZ M T, SAN-JOSÉ M, ARRILLAGA I, et al. Holm oak somatic embryogenesis:current status and future perspectives[J]. Front Plant Sci, 2019, 10:239.DOI:10.3389/fpls.2019.00239.
[82]
SERRA O, MÄHÖNEN A P, HETHERINGTON A J, et al. The making of plant armor:the periderm[J]. Annu Rev Plant Biol, 2022, 73:405-432.DOI:10.1146/annurev-arplant-102720-031405.
[83]
CAVENDER-BARES J. Diversification,adaptation,and community assembly of the American oaks (Quercus),a model clade for integrating ecology and evolution[J]. New Phytol, 2019, 221(2):669-692.DOI:10.1111/nph.15450.
[84]
XING Y, LIU Y, ZHANG Q, et al. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)[J]. Gigascience, 2019, 8(9):giz112.DOI:10.1093/gigascience/giz112.
[85]
SUN Y, GUO J L, ZENG X R, et al. Chromosome-scale genome assembly of Castanopsis tibetana provides a powerful comparative framework to study the evolution and adaptation of Fagaceae trees[J]. Mol Ecol Resour, 2022, 22(3):1178-1189.DOI:10.1111/1755-0998.13539.
[86]
VINHA A F, BARREIRA J C M, COSTA A S G, et al. A new age for Quercus spp.fruits:review on nutritional and phytochemical composition and related biological activities of acorns[J]. Compr Rev Food Sci Food Saf, 2016, 15(6):947-981.DOI:10.1111/1541-4337.12220.
[87]
SCHROEDER H, NOSENKO T, GHIRARDO A, et al. Oaks as beacons of hope for threatened mixed forests in central Europe[J]. Front For Glob Change, 2021, 4:670797. DOI: 10.3389/ffgc.2021.670797.
[88]
KREMER A, HIPP A L. Oaks: an evolutionary success story[J]. New Phytol, 2020, 226(4): 987-1011. DOI: 10.1111/nph.16274.

基金

国家自然科学基金项目(31770699)
国家自然科学基金项目(32201375)
国家自然科学基金项目(31370666)
江苏省林业三新工程项目(LYSX[2016]49)

编辑: 郑琰燚
PDF(1737 KB)

Accesses

Citation

Detail

段落导航
相关文章

/