南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1): 83-91.doi: 10.12302/j.issn.1000-2006.202106018
孔鑫1,2(), 王爱英3(), 郝广友1,*(), 宁秋蕊1,2, 王淼1,2, 殷笑寒1,4, 周永姣1,2
收稿日期:
2021-06-11
接受日期:
2022-04-12
出版日期:
2023-01-30
发布日期:
2023-02-01
通讯作者:
郝广友
作者简介:
孔鑫(基金资助:
KONG Xin1,2(), WANG Aiying3(), HAO Guangyou1,*(), NING Qiurui1,2, WANG Miao1,2, YIN Xiaohan1,4, ZHOU Yongjiao1,2
Received:
2021-06-11
Accepted:
2022-04-12
Online:
2023-01-30
Published:
2023-02-01
Contact:
HAO Guangyou
摘要: 【目的】 研究水曲柳(Fraxinus mandschurica)幼苗对不同光照强度的响应及适应机理,为育苗造林和林下天然更新研究提供参考。【方法】 以2年生盆栽水曲柳幼苗为材料进行不同光照处理,1年后测定幼苗在4种强度日光处理(相对光强100%、60%、30%和15%)下的生长、光合生理和水力性状等指标。【结果】 遮阴处理显著影响了水曲柳幼苗的生长、光合和水分生理特性。与60%和30%相对光强处理相比,100%相对光强下水曲柳具有更高的气孔导度(Gs)、净光合速率(Pn)、根系水力导度(Kroot)、地上部分水力导度(Kshoot)和整株水力导度(Kplant)。随光照强度的减弱,水曲柳的生长速率显著降低,根生物量占比(RMR)减少,最大净光合速率(Pn,max)、光补偿点(LCP)和光饱和点(LSP)降低,而茎、叶生物量占比(SMR、LMR)以及表观量子效率(AQY)增加;枝条木质部解剖结构在不同光照处理下存在显著差异,相对光强100%处理时的导管密度显著高于相对光强30%和60%处理,而导管直径显著低于30%和60%处理。【结论】 水曲柳幼苗通过调节形态、光合和水分生理特性来适应一定程度的弱光环境,但总体上对光强有较高的需求。水曲柳的光合和水力性状随光照强度的改变都具有较大的可塑性,二者对光照强度梯度变化的响应存在显著耦合关系。这些性状的可塑性响应有利于提高水曲柳幼苗在异质性光环境下的生存适合度,对于其更新阶段在林下不同光照条件下的生存有重要意义。
中图分类号:
孔鑫,王爱英,郝广友,等. 水曲柳幼苗水力结构和光合生理对光强梯度变化的耦合响应[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 83-91.
KONG Xin, WANG Aiying, HAO Guangyou, NING Qiurui, WANG Miao, YIN Xiaohan, ZHOU Yongjiao. Coordinated responses of hydraulic architecture and photosynthetic characteristics in Fraxinus mandschurica seedlings to change of light intensity irradiance[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(1): 83-91.DOI: 10.12302/j.issn.1000-2006.202106018.
表1
不同光照处理下水曲柳幼苗生长、生物量分配及光合生理特征"
项目item | 功能性状 functional trait | 相对光强relative light intensity | P | Pi | |||
---|---|---|---|---|---|---|---|
100% | 60% | 30% | 15% | ||||
形态特征 morphological characteristics | 株高/cm height | 67.30±5.10 a | 74.5±5.06 a | 28.73±1.33 b | 30.53±1.92 b | <0.001 | 0.61 |
基径/mm basal diameter | 9.37±0.53 a | 8.56±0.46 a | 4.62±0.60 b | 4.58±0.14 b | <0.001 | 0.51 | |
叶片大小/cm2 leaf size | 57.65±12.28 a | 86.35±9.52 a | 65.50±1.33 a | 57.03±9.05 a | 0.153 | 0.34 | |
总叶面积/ cm2 leaf area | 1 384.17±7.38 a | 1 821.39±243.78 a | 704.25±159.28 b | 532.88±43.17 b | 0.001 | 0.71 | |
比叶面积/ (cm2·g-1) specific leaf area | 123.57±9.26 c | 304.48±22.03 b | 464.63±21.53 a | 471.69±12.64 a | <0.001 | 0.74 | |
平均mean | 0.58 | ||||||
生物量积累 biomass accumulation | 根生物量/ g root biomass | 35.22±2.50 a | 10.51±0.77 b | 2.29±0.56 c | 2.41±0.24 c | <0.001 | 0.93 |
粗根生物量/g coarse root biomass | 17.88±1.79 a | 5.81±0.30 b | 1.11±0.34 c | 1.20±0.12 c | <0.001 | 0.93 | |
细根生物量/g fine root biomass | 17.34±1.19 a | 4.69±0.48 b | 1.18±0.22 c | 1.21±0.13 c | <0.001 | 0.93 | |
茎生物量/g stem biomass | 12.69±1.79 a | 6.98±0.72 b | 1.69±0.36 c | 1.64±0.14 c | <0.001 | 0.87 | |
叶生物量/g leaf biomass | 11.32±0.78 a | 5.96±0.54 b | 1.53±0.38 c | 1.13±0.10 c | <0.001 | 0.90 | |
叶柄生物量/g petiole biomass | 2.72±0.12 a | 1.65±0.13 b | 0.35±0.08 c | 0.28±0.05 c | <0.001 | 0.90 | |
地上生物量/g aboveground biomass | 26.72±2.23 a | 14.59±1.31 b | 3.56±0.80 c | 3.05±0.27 c | <0.001 | 0.89 | |
总生物量/g total biomass | 61.94±4.40 a | 25.10±2.01 b | 5.85±1.36 c | 5.47±0.50 c | <0.001 | 0.91 | |
平均mean | 0.91 | ||||||
生物量分配 biomass allocation | 根生物量占比root mass ratio | 0.57±0.02 a | 0.42±0.01 bc | 0.39±0.01 c | 0.44±0.01 b | <0.001 | 0.30 |
茎生物量占比stem mass ratio | 0.20±0.01 b | 0.28±0.01 a | 0.29±0.02 a | 0.30±0.01 a | <0.001 | 0.33 | |
叶生物量占比leaf mass ratio | 0.19±0.02 c | 0.24±0.01 ab | 0.26±0.01 a | 0.21±0.00 bc | 0.006 | 0.28 | |
地上生物量占比aboveground mass ratio | 0.43±0.02 c | 0.58±0.01 ab | 0.61±0.01 a | 0.56±0.01 b | 0.003 | 0.29 | |
根冠比root shoot ratio | 3.14±0.30 a | 1.78±0.13 bc | 1.50±0.03 c | 2.13±0.04 b | 0.001 | 0.52 | |
平均mean | 0.34 | ||||||
光合生理 photosynthetic characteristics | AQY | 0.06±0.01 c | 0.09±0.01 b | 0.11±0.00 a | — | 0.001 | 0.45 |
Rd/(μmol·m-2·s-1) | 0.82±0.04 b | 0.87±0.03 ab | 0.95±0.00 a | — | 0.065 | 0.14 | |
Pn,max/(μmol·m-2·s-1) | 7.55±0.03 a | 3.46±0.01 c | 3.57±0.00 b | — | <0.001 | 0.54 | |
Lcp/ (μmol·m-2·s-1) | 12.87±1.02 a | 10.26±0.93 ab | 8.40±0.00 b | — | 0.021 | 0.35 | |
Lsp/ (μmol·m-2·s-1) | 380.00±61.12 a | 100.78±1.62 b | 117.43±9.64 b | — | 0.002 | 0.73 | |
Pn/ (μmol·m-2·s-1) | 6.19±0.17 a | 1.29±0.01 b | 0.53±0.01 b | — | 0.001 | 0.91 | |
Gs/ (mol·m-2·s-1) | 0.10±0.01 a | 0.03±0.00 b | 0.01±0.00 b | — | 0.001 | 0.90 | |
平均mean | 0.57 |
[1] |
韩有志, 王政权, 谷加存. 林分光照空间异质性对水曲柳更新的影响[J]. 植物生态学报, 2004, 28(4): 468-475.
doi: 10.17521/cjpe.2004.0064 |
HAN Y Z, WANG Z Q, GU J C. The effects of spatial heterogeneity of understorey light availability on regeneration of Manchurian ash[J]. Chin J Plant Ecol, 2004, 28(4): 468-475. DOI: 10.17521/cjpe.2004.0064.
doi: 10.17521/cjpe.2004.0064 |
|
[2] | 罗光宇, 陈超, 李月灵, 等. 光照强度对濒危植物长序榆光合特性的影响[J]. 生态学杂志, 2021, 40(4): 980-988. |
LUO G Y, CHEN C, LI Y L, et al. Effects of light intensities on the photosynthetic characteristics of Ulmus elongata[J]. Chin J Ecol, 2021, 40(4): 980-988. DOI: 10.13292/j.1000-4890.202104.013.
doi: 10.13292/j.1000-4890.202104.013 |
|
[3] |
ZHANG M, ZHU J J, LI M C, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. For Ecol Manag, 2013, 306: 234-242. DOI: 10.1016/j.foreco.2013.06.031.
doi: 10.1016/j.foreco.2013.06.031 |
[4] |
WANG A Y, HAO G Y, GUO J J, et al. Differentiation in leaf physiological traits related to shade and drought tolerance underlies contrasting adaptations of two Cyclobalanopsis (Fagaceae) species at the seedling stage[J]. Forests, 2020, 11(8): 844. DOI: 10.3390/f11080844.
doi: 10.3390/f11080844 |
[5] | 赵康宁, 刘丹丹. 植物的耐阴性评价[J]. 南华大学学报(自然科学版), 2020, 34(3):51-59. |
ZHAO K N, LIU D D. Assessment of plant shade tolerance[J]. J Univ South China (Sci Technol), 2020, 34(3): 51-59. DOI: 10.19431/j.cnki.1673-0062.2020.03.008.
doi: 10.19431/j.cnki.1673-0062.2020.03.008 |
|
[6] | 陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2): 365-370. |
CHEN S B, SONG A Q, LI Z J. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chin J Appl Ecol, 2005, 16(2): 365-370. DOI: 10.13287/j.1001-9332.2005.0449.
doi: 10.13287/j.1001-9332.2005.0449 |
|
[7] | 杨莹, 王传华, 刘艳红. 光照对鄂东南2种落叶阔叶树种幼苗生长、光合特性和生物量分配的影响[J]. 生态学报, 2010, 30(22): 6082-6090. |
YANG Y, WANG C H, LIU Y H. The effect of low irradiance on growth, photosynthetic characteristics, and biomass allocation in two deciduous broad-leaved tree seedlings in southeast of Hubei Province[J]. Acta Ecol Sin, 2010, 30(22): 6082-6090. | |
[8] |
殷东生, 沈海龙. 森林植物耐荫性及其形态和生理适应性研究进展[J]. 应用生态学报, 2016, 27(8): 2687-2698.
doi: 10.13287/j.1001-9332.201608.018 |
YIN D S, SHEN H L. Shade tolerance and the adaptability of forest plants in morphology and physiology: a review[J]. Chin J Appl Ecol, 2016, 27(8): 2687-2698. DOI: 10.13287/j.1001-9332.201608.018.
doi: 10.13287/j.1001-9332.201608.018 |
|
[9] |
SCOFFONI C, KUNKLE J, PASQUETKOK J, et al. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads[J]. New Phytol, 2015, 207(1): 43-58. DOI: 10.1111/nph.13346.
doi: 10.1111/nph.13346 pmid: 25858142 |
[10] | 刘青青, 马祥庆, 黄智军, 等. 光强对杉木幼苗形态特征和叶片非结构性碳含量的影响[J]. 生态学报, 2019, 39(12): 4455-4462. |
LIU Q Q, MA X Q, HUANG Z J, et al. Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings[J]. Acta Ecol Sin, 2019, 39(12): 4455-4462. DOI: 10.5846/stxb201805071017.
doi: 10.5846/stxb201805071017 |
|
[11] |
SÁNCHEZ-GÓMEZ D, VALLADARES F, ZAVALA A M. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species[J]. Tree Physiol, 2006, 26(11): 1425-1433. DOI: 10.1093/treephys/26.11.1425.
doi: 10.1093/treephys/26.11.1425 |
[12] |
PUGLIELLI G, LAANISTO L, POORTER H, et al. Global patterns of biomass allocation in woody species with different tolerance of shade and drought: evidence for multiple strategies[J]. New Phytol, 2021, 229(1): 308-322. DOI: 10.1111/nph.16879.
doi: 10.1111/nph.16879 |
[13] | 张云, 夏国华, 马凯, 等. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2014, 25(7): 1940-1948. |
ZHANG Y, XIA G H, MA K, et al. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea[J]. Chin J Appl Ecol, 2014, 25(7): 1940-1948. DOI: 10.13287/j.1001-9332.20140425.001.
doi: 10.13287/j.1001-9332.20140425.001 |
|
[14] |
唐星林, 姜姜, 金洪平, 等. 遮阴对闽楠叶绿素含量和光合特性的影响[J]. 应用生态学报, 2019, 30(9): 2941-2948.
doi: 10.13287/j.1001-9332.201909.002 |
TANG X L, JIANG J, JIN H P, et al. Effects of shading on chlorophyll content and photosynthetic characteristics in leaves of Phoebe bournei[J]. Chin J Appl Ecol, 2019, 30(9): 2941-2948. DOI: 10.13287/j.1001-9332.201909.002.
doi: 10.13287/j.1001-9332.201909.002 |
|
[15] |
SCHOONMAKER A L, HACKE U G, LANDHUSSER S M, et al. Hydraulic acclimation to shading in boreal conifers of varying shade tolerance[J]. Plant Cell Environ, 2010, 33(3): 382-393. DOI: 10.1111/j.1365-3040.2009.02088.x.
doi: 10.1111/j.1365-3040.2009.02088.x |
[16] |
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2): 352-360.
doi: 10.13287/j.1001-9332.201802.035 |
YIN X H, HAO G Y. Divergence between ring- and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in sustantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2): 352-360. DOI: 10.13287/j.1001-9332.201802.035.
doi: 10.13287/j.1001-9332.201802.035 |
|
[17] |
DEGUCHI R, KOYAMA K. Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus subsp. giganteus[J]. Forests, 2020, 11(12): 1365. DOI: 10.3390/f11121365.
doi: 10.3390/f11121365 |
[18] |
PLAVCOVÁ L, HACKE U G, Sperry J S. Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation[J]. Plant Cell Environ, 2010, 34(3): 501-513. DOI: 10.1111/j.1365-3040.2010.02258.x.
doi: 10.1111/j.1365-3040.2010.02258.x |
[19] HACKE U G. Irradiance-induced changes in hydraulic architecture[J]. Botany, 2013, 92(6): 437-442. DOI: 10.1139/cjb-2013-0200.
doi: 10.1139/cjb-2013-0200 |
|
[20] |
WANG J H, CAI Y F, LI S F, et al. Photosynthetic acclimation of rhododendrons to light intensity in relation to leaf water-related traits[J]. Plant Ecol, 2020, 221(5): 1-14. DOI: 10.1007/s11258-020-01019-y.
doi: 10.1007/s11258-020-01019-y |
[21] |
HERNÁNDEZ E I, VILAGROSA A, LUIS V C, et al. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes[J]. Environ Exp Bot, 2009, 67(1): 269-276. DOI: 10.1016/j.envexpbot.2009.07.004.
doi: 10.1016/j.envexpbot.2009.07.004 |
[22] | 代永欣, 王林, 王延书, 等. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. |
DAI Y X, WANG L, WANG Y S, et al. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Sci J, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750.
doi: 10.11913/PSJ.2095-0837.2017.50750 |
|
[23] |
BRODRIBB T J, BOWMAN D, NICHOS S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytol, 2010, 188(2): 533-542. DOI: 10.1111/j.1469-8137.2010.03393.x.
doi: 10.1111/j.1469-8137.2010.03393.x pmid: 20673281 |
[24] |
SONG J, YANG D, NIU C Y, et al. Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China[J]. For Ecol Manag, 2017, 418: 63-72. DOI: 10.1016/j.foreco.2017.08.005.
doi: 10.1016/j.foreco.2017.08.005 |
[25] |
ZHANG J L, CAO K F. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Funct Ecol, 2009, 23(4): 658-667. DOI: 10.1111/j.1365-2435.2009.01552.x.
doi: 10.1111/j.1365-2435.2009.01552.x |
[26] |
HAO G Y, WANG A Y, SACK L, et al. Is hemiepiphytism an adaptation to high irradiance? Testing seedling responses to light levels and drought in hemiepiphytic and non-hemiepiphytic Ficus[J]. Physiol Plant, 2013, 148(1): 74-86. DOI: 10.1111/j.1399-3054.2012.01694.x.
doi: 10.1111/j.1399-3054.2012.01694.x |
[27] |
SELLIN A, KUPPER P. Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch[J]. Oecologia, 2005, 142(3): 388-397. DOI: 10.1007/s00442-004-1748-3.
doi: 10.1007/s00442-004-1748-3 pmid: 15517405 |
[28] |
SACK L, HOLBROOK N M. Leaf hydraulics[J]. Annu Rev Plant Biol, 2006, 57(1): 361-381. DOI: 10.1146/annurev.arplant.56.032604.144141.
doi: 10.1146/annurev.arplant.56.032604.144141 |
[29] | 孙晓程, 张亚洲, 范晓男. 长白山阔叶红松林的现状及经营管理[J]. 吉林师范大学学报(自然科学版), 2008, 29(2):105-107. |
SUN X C, ZHANG Y Z, FAN X N. The status and operating management of broad leaved Pinus koariensis forests in Changbai Mountains[J]. Jilin Nor Univ J (Nat Sci Ed), 2008, 29(2): 105-107. DOI: 10.16862/j.cnki.issn1674-3873.2008.02.040.
doi: 10.16862/j.cnki.issn1674-3873.2008.02.040 |
|
[30] | 孙一荣, 朱教君, 于立忠, 等. 不同光强下核桃楸,水曲柳和黄菠萝的光合生理特征[J]. 林业科学, 2009, 45(9): 29-35. |
SUN Y R, ZHU J J, YU L Z, et al. Photosynthetic characteristics of Juglans mandshurica, Fraxinus mandshurica and Phellodendron amurense under different light regimes[J]. Sci Silvae Sin, 2009, 45(9): 29-35. DOI: 10.3321/j.issn:1001-7488.2009.09.006.
doi: 10.3321/j.issn:1001-7488.2009.09.006 |
|
[31] | 郝占庆, 代力民, 贺红士, 等. 气候变暖对长白山主要树种的潜在影响[J]. 应用生态学报, 2001, 12(5): 653-658. |
HAO Z Q, DAI L M, HE H S, et al. Potential response of major tree species to climate warming in Changbai Mountains, northeast China[J]. Chin J Appl Ecol, 2001, 12(5): 653-658. DOI: 10.1007/s11769-001-0027-z.
doi: 10.1007/s11769-001-0027-z |
|
[32] | 王淼, 刘亚琴, 郝占庆, 等. 长白山阔叶红松林生态系统的呼吸速率[J]. 应用生态学报, 2006, 17(10): 1789-1795. |
WANG M, LIU Y Q, HAO Z Q, et al. Respiration rate of broad leaved Korean pine forest ecosystem in Changbai Mountains[J]. Chin J Appl Ecol, 2006, 17(10): 1789-1795. | |
[33] | 代力民, 陈高, 邓红兵, 等. 受干扰长白山阔叶红松林林分结构组成特征及健康距离评估[J]. 应用生态学报, 2004, 15(10): 1750-1754. |
DAI L M, CHEN G, DENG H B et al. Structure characteristics and health distance assessment of various disturbed communities of Korean pine and broadleaved mixed forest in Changbai Mountains[J]. Chin J Appl Ecol, 2004, 15(10): 1750-1754. | |
[34] |
TYREE M T, SINCLAIR B, LU P, et al. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann For Sci 1993, 50(5): 417-423. DOI: 10.1051/forest:19930501.
doi: 10.1051/forest:19930501 |
[35] |
WANG A Y, WANG M, YANG D, et al. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica[J]. Tree physiol, 2016, 36(8): 1045-1055. DOI: 10.1093/treephys/tpw048.
doi: 10.1093/treephys/tpw048 |
[36] |
TSUDA M, TYREE M T. Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum[J]. Tree Physiol. 1997, 17(6): 351-357. DOI: 10.1093/treephys/17.6.351.
doi: 10.1093/treephys/17.6.351 |
[37] |
VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936. DOI: 10.2307/177282.
doi: 10.2307/177282 |
[38] | MEDIAVILLA S,ESCUDERO A. Differences in biomass allocation patterns between saplings of two co-occurring Mediterranean oaks as reflecting different strategies in the use of light and water[J]. Eur J For Res, 2010, 129(4): 697-706. DOI: 10.1007/s10342-010-0375-2. |
[39] |
RODRÍGUEZ-GARCÍA E, BRAVO F. Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and nitrogen availability[J]. For Ecol Manag, 2013, 307(1): 196-205. DOI: 10.1016/j.foreco.2013.06.046.
doi: 10.1016/j.foreco.2013.06.046 |
[40] | 成向荣, 文黎, 海静静, 等. 针叶茴香对变化光环境的表型可塑性[J]. 生态学报, 2019, 9(6): 1935-1944. |
CHEN X R, WEN L, HAI J J, et al. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments[J]. Acta Ecol Sin, 2019, 39(6): 1935-1944. DOI: 10.5846/stxb201809192044. | |
[41] |
WANG D, HUANG X L, CHEN J Z, et al. Plasticity of leaf traits of Juglans regia L.f. fluodianense Liu et Xu seedlings under different light conditions in Karst habitats[J]. Forests, 2021, 12(1): 81. DOI: 10.3390/f12010081.
doi: 10.3390/f12010081 |
[42] |
BARIGHT S, THARWAT I, AURORE B, et al. Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species[J]. Tree Physiol, 2006, 26(12): 1505-1516. DOI: 10.1093/treephys/26.12.1505.
doi: 10.1093/treephys/26.12.1505 pmid: 17169890 |
[43] |
DOMINGO S K, JAVIER P, JAUME F, et al. Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss.)[J]. Tree Physiol, 2014, 34(12): 1321-1333. DOI: 10.1093/treephys/tpu095.
doi: 10.1093/treephys/tpu095 |
[44] | 杨晓青, 张岁岐, 刘小芳, 等. 不同抗旱型冬小麦品种根系水力导度与解剖结构的关系[J]. 西北农林科技大学学报(自然科学版), 2007, 35(8): 160-164. |
YANG X Q, ZHANG S Q, LIU X F, et al. Relationship between roots hydraulic conductivity and root anatomy of winter wheat (T. aestivum)[J]. J Northwest A F Univ (Nat Scie Ed), 2007, 35(8): 160-164. DOI: 10.13207/j.cnki.jnwafu.2007.08.017.
doi: 10.13207/j.cnki.jnwafu.2007.08.017. |
|
[45] |
TRUBAT R, CORTINA J, VILAGROSA A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings[J]. Oecologia, 2012, 170(4): 899-908. DOI: 10.1007/s00442-012-2380-2.
doi: 10.1007/s00442-012-2380-2 |
[46] |
SPERRY J S, HACKE U G, WHEELER J K. Comparative analysis of end wall resistivity in xylem conduits[J]. Plant Cell Environ, 2010, 28(4): 456-465. DOI: 10.1111/j.1365-3040.2005.01287.x.
doi: 10.1111/j.1365-3040.2005.01287.x |
[47] |
POORTER L, MCDONAALD I, ALARCÓN A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species[J]. New Phytol, 2010, 185(2): 481-492. DOI: 10.1111/j.1469-8137.2009.03092.x.
doi: 10.1111/j.1469-8137.2009.03092.x pmid: 19925555 |
[48] |
NIU C Y, MEINZER F C, HAO G Y, et al. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature[J]. Funct Ecol, 2017, 31(8): 1550-1560. DOI: 10.1111/1365-2435.12868.
doi: 10.1111/1365-2435.12868 |
[49] |
ZIMMERMANN M H. Xylem structure and the ascent of sap[J]. Biol Plant, 1984, 26(3): 165. DOI: 10.1007/BF02895041.
doi: 10.1007/BF02895041 |
[50] |
NAGASUGA K, KUBOTA F. Change in hydraulic resistance and shoot morphology of napier grass (Pennisetum purpureum Schumach.)under shaded condition[J]. Plant Pro Sci, 2006, 9(4): 364-368. DOI: 10.1626/pps.9.364.
doi: 10.1626/pps.9.364 |
[51] |
GUYOT G, SCOFFONI C, SACK L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control[J]. Plant Cell Enviro, 2012, 35(5): 857-871. DOI: 10.1111/j.1365-3040.2011.02458.x.
doi: 10.1111/j.1365-3040.2011.02458.x |
[52] | 王琬茹, 刘盛, 田佳歆, 等. 郁闭度对长白落叶松人工林下更新幼树生长的影响[J]. 北华大学学报(自然科学版), 2020, 21(6):724-729. |
WANG W R, LIU S, TIAN J X, et al. Effect of canopy density on regeneration growth of young treesunder Larix olgensis plantation[J]. J Beihua Uni (Nat Sci), 2020, 21(6): 724-729. DOI: 10.11713/j.issn.1009-4822.2020.06.005.
doi: 10.11713/j.issn.1009-4822.2020.06.005 |
|
[53] | 郭韦韦, 张青, 亢新刚, 等. 长白山云冷杉林不同演替阶段树种组成及林下更新研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1):109-116. |
GUO W W, ZHANG Q, KANG X G, et al. Species composition and characteristics of saplings for spruce-fir forest at different succession stages in Changbai Mountain[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(1): 109-116. DOI: 10.3969/j.issn.1000-2006.2017.01.017.
doi: 10.3969/j.issn.1000-2006.2017.01.017 |
[1] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[2] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[3] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[4] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[5] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[6] | 梁文超, 步行, 罗思谦, 谢寅峰, 胡加玲, 张往祥. 施肥对增温促花后‘长寿冠’海棠叶片生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 114-120. |
[7] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
[8] | 张银凤, 蔡洪月, 彭金根, 刘学军, 谢利娟, 张华, 王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 197-204. |
[9] | 李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟. 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 271-278. |
[10] | 苑景淇, 于忠亮, 兰雪涵, 李成宏, 田年军, 杜凤国. 遮阴对濒危植物朝鲜崖柏光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 58-66. |
[11] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[12] | 张成, 王小燕, 王贤荣, 段一凡, 张敏, 施大伟, 朱跃, 宋炎峰, 柴子涵, 李岚. 雄全异株桂花不同花期光合和内源激素的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 75-80. |
[13] | 刘雅楠, 刘洋, 兰再平, 铁牛, 张梦弢, 王成德, 罗奇辉, 张晨. 不同灌溉方式对樟子松生长、光合特性及土壤水分运移的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 135-143. |
[14] | 徐展宏, 朱莹, 金慧颖, 孙操稳, 方升佐. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 103-110. |
[15] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||