南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2): 27-34.doi: 10.12302/j.issn.1000-2006.202206024
所属专题: “攥紧中国种子”视域下的中国林草种业研究专题Ⅰ
• 专题报道:“攥紧中国种子”视域下的中国林草种业研究专题Ⅰ(执行主编 施季森 喻方圆) • 上一篇 下一篇
收稿日期:
2022-06-17
修回日期:
2022-07-26
出版日期:
2023-03-30
发布日期:
2023-03-28
基金资助:
SUN Rongxi1(), PAN Xinhao1, ZHONG Xiaoru1, LI Guisheng2
Received:
2022-06-17
Revised:
2022-07-26
Online:
2023-03-30
Published:
2023-03-28
摘要:
【目的】揭示米槠(Castanopsis carlesii)种子形态特征与营养成分的地理变异规律,为其种质资源保护和开发利用提供科学依据。【方法】收集米槠天然分布区13个种源357个单株的种子,测定种子表型(种子长、种子宽、长宽比、体积、表面积和千粒质量)及其营养成分(可溶性糖及淀粉含量),并进行方差分析、相关分析和聚类分析。【结果】米槠种子6个表型性状在种源间和种源内均达到极显著水平(P<0.01),其中江西定南(JXDN)的种子长、宽、体积、表面积及千粒质量均最大,且与其他种源差异显著;而安徽祁门(AHQM)的千粒质量最小,仅为江西定南的66.23%,且种子长、宽、体积、表面积均较小。淀粉和可溶性糖含量(质量分数)分别为31.80%和21.76%,而且可溶性糖和淀粉含量在种源间差异达到极显著水平(P<0.01),说明营养成分含量在不同种源间相差很大,存在丰富的变异,种源间的变异系数分别为14.06%和30.62%。平均表型分化系数为28.15%,种源内变异是其表型特征遗传变异的主要来源。淀粉含量与千粒质量和种子宽呈显著正相关(P<0.05),可溶性糖含量与种子长和长宽比呈极显著负相关(P<0.01);种子长与经度呈显著负相关(P<0.05),长宽比与经度和最冷季降水量分别呈极显著负相关(P<0.01)和显著负相关(P<0.05),淀粉含量与年平均温度呈显著正相关(P<0.05)。13个种源可以划为3个类群:第Ⅰ类群包括江西定南(JXDN),属于大种子、高可溶性糖含量、高淀粉含量类群;第Ⅱ类群包括安徽祁门(AHQM)、江西信丰(JXXF)、浙江开化(ZJKH)和广东连平(GDLP),属于小种子、高可溶性糖含量、低淀粉含量类群;其他8个种源聚为第Ⅲ类群,属于中种子、中可溶性糖含量、中淀粉含量类群。地理分布相近的种源没有优先聚在一起,说明米槠种子未表现出明显的地理变异规律。【结论】米槠种子多样性是遗传和环境因素共同影响的结果,除遗传因素外,主要受经度、年平均温度和最冷季降水量影响。种源内变异是种子遗传变异主要来源,因此,在米槠的遗传改良工作中,应加大对优良单株的选择和利用。江西定南种源具有大种子和高营养的特征,可作为潜在的优良种源。
中图分类号:
孙荣喜,潘昕昊,仲小茹,等. 不同种源米槠种子形态特征与营养成分变异分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 27-34.
SUN Rongxi, PAN Xinhao, ZHONG Xiaoru, LI Guisheng. Variations in seed morphological characteristics and nutritional content of Castanopsis carlesii from different provenances[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 27-34.DOI: 10.12302/j.issn.1000-2006.202206024.
表1
米槠不同种源的地理信息及主要气候因子"
序号 No. | 种源代码 code of provenance | 种源位置 provenance location | 采种株数 individual number for seed collection | 经度(E)/ (°) longitude | 纬度(N)/ (°) latitude | 海拔/m altitude | 年均 温度/℃ annual mean temperature | 昼夜温差 月均值/℃ mean diurnal range | 最暖月 最高温/℃ max temperature of the warmest month | 年均 降水量/ mm annual precipitation | 最冷季 降水量/ mm precipitation of the coldest quarter | 湿润 频率/% wet-day frequency |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | HNCJ | 海南昌江 | 30 | 109.14 | 19.12 | 600 | 22.2 | 7.9 | 29.8 | 1 497 | 48 | 8.19 |
2 | JXCY | 江西崇义 | 30 | 114.26 | 25.79 | 250 | 18.8 | 8.3 | 33.5 | 1 528 | 187 | 14.32 |
3 | JXDN | 江西定南 | 30 | 115.14 | 24.92 | 300 | 19.4 | 8.6 | 32.2 | 1 681 | 194 | 11.63 |
4 | JXDX | 江西德兴 | 30 | 117.69 | 28.85 | 150 | 17.2 | 8.6 | 32.8 | 1 829 | 254 | 12.67 |
5 | GDXF | 广东新丰 | 30 | 114.12 | 24.13 | 600 | 17.6 | 8.3 | 32.8 | 2 007 | 192 | 10.12 |
6 | ZJKH | 浙江开化 | 31 | 118.5 | 29.14 | 350 | 16.4 | 8.0 | 32.1 | 1 738 | 241 | 13.62 |
7 | HNHY | 湖南衡阳 | 9 | 112.69 | 27.25 | 380 | 16.0 | 7.3 | 31.3 | 1 753 | 221 | 15.30 |
8 | JXLN | 江西龙南 | 30 | 114.43 | 24.57 | 500 | 19.1 | 8.6 | 31.3 | 1 799 | 195 | 11.32 |
9 | GDLP | 广东连平 | 30 | 114.45 | 24.47 | 550 | 19.1 | 8.6 | 31.0 | 1 832 | 194 | 11.01 |
10 | AHQM | 安徽祁门 | 25 | 117.27 | 29.98 | 550 | 14.1 | 7.4 | 29.1 | 1 751 | 200 | 10.84 |
11 | JXQN | 江西全南 | 30 | 114.46 | 24.61 | 480 | 18.9 | 8.5 | 31.1 | 1 797 | 195 | 11.39 |
12 | JXXF | 江西信丰 | 30 | 115.21 | 25.24 | 350 | 19.0 | 8.5 | 32.4 | 1 650 | 193 | 12.23 |
13 | FJHA | 福建华安 | 22 | 117.29 | 24.56 | 200 | 20.8 | 7.1 | 31.8 | 1 553 | 155 | 10.23 |
表2
不同种源米槠种子形态特征及营养成分差异分析"
代码 code | 种子长/cm seed length | 种子宽/cm seed width | 长宽比 length- width ratio | 体积/cm3 volume | 表面积/cm2 surface area | 千粒质量/g 1 000-seed weight | m(淀粉)/ % | m(可溶 性糖)/% |
---|---|---|---|---|---|---|---|---|
ZJKH | 0.96±0.05 cd | 0.90±0.06 b | 1.07±0.03 a | 0.40±0.08 bc | 2.09±0.27 bc | 487.85±94.42 bcd | 31.65±4.00 cde | 26.71±4.37 a |
JXDN | 1.02±0.07 a | 0.93±0.07 a | 1.10±0.05 abc | 0.46±0.10 a | 2.32±0.32 a | 599.67±125.27 a | 33.18±4.28 abcd | 26.24±8.38 a |
GDLP | 0.95±0.05 cd | 0.86±0.07 cde | 1.11±0.07 bc | 0.36±0.07 cdef | 1.97±0.25 cde | 458.65±87.63 d | 33.87±4.06 abc | 27.13±1.32 a |
JXXF | 0.93±0.04 d | 0.84±0.02 ef | 1.11±0.05 bcd | 0.33±0.02 ef | 1.87±0.09 de | 405.10±15.41 e | 28.62±4.44 fg | 27.31±9.94 a |
JXCY | 0.97±0.06 c | 0.82±0.07 f | 1.19±0.08 ef | 0.33±0.07 f | 1.88±0.27 de | 406.53±89.37 e | 32.25±3.63 bcde | 18.21±9.31 bc |
JXQN | 0.98±0.03 c | 0.90±0.04 b | 1.10±0.05 abc | 0.42±0.04 b | 2.18±0.14 b | 467.12±47.89 cd | 35.28±4.71 a | 18.23±4.87 bc |
GDXF | 1.02±0.07 ab | 0.89±0.05 bcd | 1.16±0.10 de | 0.41±0.06 b | 2.16±0.20 b | 514.08±72.64 bc | 31.14±3.92 cdef | 13.88±3.04 cd |
HNCJ | 1.02±0.08 ab | 0.84±0.06 ef | 1.21±0.10 f | 0.36±0.07 cdef | 2.01±0.25 cd | 442.50±82.97 de | 34.89±3.91 ab | 17.05±8.56 bc |
JXLN | 0.98±0.05 c | 0.85±0.06 ef | 1.16±0.09 de | 0.36±0.06 def | 1.97±0.21 cde | 446.18±78.28 de | 30.21±4.48 ef | 21.06±6.16 c |
AHQM | 0.93±0.05 d | 0.82±0.06 f | 1.14±0.08 cd | 0.32±0.06 f | 1.83±0.21 e | 397.15±76.36 e | 27.0.8±4.10 g | 30.40±4.62 a |
JXDX | 0.97±0.05 cd | 0.89±0.04 bc | 1.08±0.05 ab | 0.39±0.07 bcd | 2.05±0.25 bc | 491.66±101.24 bcd | 32.36±4.90 bcde | 20.74±4.66 c |
FJHA | 0.99±0.03 bc | 0.91±0.07 ab | 1.09±0.02 ab | 0.42±0.04 b | 2.16±0.15 b | 532.56±46.10 b | 30.50±5.05 def | 17.06±4.31 bc |
HNHY | 1.02±0.08 ab | 0.86±0.06 def | 1.19±0.06 ef | 0.37±0.07 bcde | 2.05±0.26 bc | 473.62±75.03 cd | 30.11±5.93 ef | 12.22±2.76 d |
均值mean | 0.98±0.06 | 0.87±0.06 | 1.13±0.08 | 0.38±0.08 | 2.04±0.26 | 470.52±97.78 | 31.80±4.84 | 21.76±8.94 |
CV/% | 5.54 | 6.46 | 5.58 | 16.45 | 10.82 | 16.16 | 14.06 | 30.62 |
F | 8.926** | 10.920** | 11.968** | 10.910** | 10.585** | 15.688** | 8.256** | 14.696** |
表3
米槠种子形态特征方差分量和种源表型分化系数"
性状 traits | 方差分量 variance component | 方差分量百分比/% proportion of variance component | Vst/% | ||||
---|---|---|---|---|---|---|---|
种源间 among provenance | 种源内 between provenance | 随机误差 random errors | 种源间 among provenance | 种源内 between provenance | 随机误差 random errors | ||
种子长 seed length | 0.001 | 0.003 | 0.004 | 12.50 | 37.50 | 50.00 | 25.00 |
种子宽 seed width | 0.001 | 0.003 | 0.004 | 12.50 | 37.50 | 50.00 | 25.00 |
长宽比length-width ratio | 0.002 | 0.005 | 0.006 | 15.38 | 38.46 | 46.15 | 28.57 |
体积 volume | 0.002 | 0.004 | 0.005 | 18.18 | 36.36 | 45.45 | 33.33 |
表面积 surface area | 0.019 | 0.051 | 0.064 | 14.18 | 38.06 | 47.76 | 27.14 |
千粒质量1 000-seed weight | 2 631.921 | 6 177.806 | 569.764 | 28.06 | 65.87 | 6.07 | 29.88 |
平均值mean | 16.80 | 42.29 | 40.91 | 28.15 |
表4
米槠种子形态特征及营养成分相关性分析"
性状 trait | 淀粉含量 starch content | 可溶性 糖含量 soluble sugar content | 千粒质量 1 000-seed weight | 种子长 seed length | 种子宽 seed width | 体积 volume | 表面积 surface area | 长宽比 length- width ratio |
---|---|---|---|---|---|---|---|---|
淀粉含量starch content | 1 | |||||||
可溶性糖含量soluble sugar content | -0.078 | 1 | ||||||
千粒质量1 000-seed weight | 0.112* | -0.034 | 1 | |||||
种子长seed length | 0.165** | -0.184** | 0.655** | 1 | ||||
种子宽seed width | 0.121* | -0.024 | 0.876** | 0.505** | 1 | |||
体积volume | 0.137** | -0.054 | 0.915** | 0.667** | 0.971** | 1 | ||
表面积surface area | 0.157** | -0.085 | 0.908** | 0.757** | 0.937** | 0.990** | 1 | |
长宽比length width ratio | 0.019 | -0.149** | -0.323** | 0.389** | -0.595** | -0.410** | -0.293** | 1 |
表5
米槠种子表型性状及营养成分与地理气候因子的相关性分析"
性状 trait | 经度(E) longitude | 纬度(N) latitude | 海拔 altitude | 年均 温度 annual mean temperature | 昼夜温差 月均值 mean diurnal range | 最暖月 最高温 max temperature of the warmest month | 年均 降水量 annual precipitation | 最冷季 降水量 precipitation of the coldest quarter | 湿润 频率 wet-day frequency |
---|---|---|---|---|---|---|---|---|---|
千粒质量1 000-seed weight | 0.171 | -0.088 | -0.316 | 0.210 | 0.048 | 0.104 | 0.162 | 0.115 | -0.082 |
种子长seed length | -0.573* | -0.522 | 0.100 | 0.362 | -0.112 | -0.205 | -0.014 | -0.389 | -0.153 |
种子宽seed width | 0.340 | 0.023 | -0.341 | 0.152 | 0.127 | 0.155 | 0.241 | 0.248 | -0.063 |
表面积surface area | 0.161 | -0.114 | -0.242 | 0.222 | 0.113 | 0.075 | 0.204 | 0.118 | -0.108 |
体积volume | 0.040 | -0.199 | -0.177 | 0.261 | 0.079 | 0.015 | 0.191 | 0.035 | -0.132 |
长宽比length width ratio | -0.809** | -0.455 | 0.420 | 0.153 | -0.210 | -0.318 | -0.260 | -0.572* | -0.069 |
淀粉含量 starch content | -0.420 | -0.547 | 0.077 | 0.578* | 0.431 | 0.124 | -0.083 | -0.315 | -0.222 |
可溶性糖含量soluble sugar content | 0.493 | 0.390 | 0.020 | -0.262 | 0.252 | 0.097 | -0.008 | 0.269 | -0.046 |
[1] | 方燕鸿. 武夷山米槠、甜槠常绿阔叶林的物种组成及多样性分析[J]. 生物多样性, 2005, 13(2):148-155. |
FANG Y H. Species composition and diversity of evergreen broad-leaved forest of Castanopsis carlesii and C.eyrei in Wuyishan National Nature Reserve,Fujian,China[J]. Chin Biodivers, 2005, 13(2):148-155. | |
[2] | 罗坤水, 杨春霞, 林小凡, 等. 壳斗科树种育苗技术研究[J]. 江西林业科技, 2008, 36(6):6-9. |
LUO K S, YANG C X, LIN X F, et al. Studies on the breeding technology of Fagaceae species[J]. Jiangxi For Sci Technol, 2008, 36(6):6-9.DOI:10.16259/j.cnki.36-1342/s.2008.06.015. | |
[3] | 曹展波, 林小凡, 杨桦, 等. 米槠人工培育技术[J]. 南方林业科学, 2015, 43(2):17-19. |
CAO Z B, LIN X F, YANG H, et al. Techniques for artificial cultivation of Castanopsis carlesii[J]. South China For Sci, 2015, 43(2):17-19.DOI:10.16259/j.cnki.36-1342/s.2015.02.006. | |
[4] | 黄文标. 米槠容器扦插繁殖技术试验研究[J]. 内蒙古林业调查设计, 2015, 38(5):56-58. |
HUANG W B. Study on the experimental technology of cutting propagation of Castanopsis carlesii container[J]. Inn Mong For Investig Des, 2015, 38(5):56-58.DOI:10.13387/j.cnki.nmld.2015.05.022. | |
[5] | 康建生. 米槠生物量空间结构特征的研究[J]. 江西林业科技, 2011, 39(3):33-35. |
KANG J S. Study on biomass spatial structure of Castanopsis carlesii[J]. Jiangxi For Sci Technol, 2011, 39(3):33-35.DOI:10.16259/j.cnki.36-1342/s.2011.03.011. | |
[6] | 李丽婷. 皆伐对一代和二代人促米槠林分特征的影响[J]. 山地学报, 2004, 22(3):310-314. |
LI L T. Effects of clear-cutting on Castanopsis carlesii of first and second generation[J]. J Mt Res, 2004, 22(3):310-314.DOI:10.3969/j.issn.1008-2786.2004.03.009. | |
[7] | LIU X F, LIN T C, YANG Z J, et al. Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii[J]. Plant Soil, 2017, 418(1):141-151.DOI:10.1007/s11104-017-3281-2. |
[8] | 李伟, 刘小飞, 陈光水, 等. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 2016, 52(11):11-18. |
LI W, LIU X F, CHEN G S, et al. Effects of litter manipulation on soil respiration in the natural forests and plantations of Castanopsis carlesii in mid-subtropical China[J]. Sci Silvae Sin, 2016, 52(11):11-18.DOI:10.11707/j.1001-7488.20161102. | |
[9] | 张建和. 福建木兰溪源自然保护区米槠群落凋落物热值及能量归还动态[J]. 福建农业学报, 2016, 31(2):194-198. |
ZHANG J H. Calorific value and energy-recycling of litterfall in Castanopsis carlesii community at Mulanxi water conservation area in Fujian[J]. Fujian J Agric Sci, 2016, 31(2):194-198.DOI:10.19303/j.issn.1008-0384.2016.02.018. | |
[10] | 胡双成, 熊德成, 黄锦学, 等. 福建三明米槠次生林在不同更新方式下的初期细根产量[J]. 应用生态学报, 2015, 26(11):3259-3267. |
HU S C, XIONG D C, HUANG J X, et al. Fine root production in initial stage of Castanopsis carlesii under different regeneration modes in Sanming,Fujian Province,China[J]. Chin J Appl Ecol, 2015, 26(11):3259-3267.DOI:10.13287/j.1001-9332.20150915.004. | |
[11] | 陈云玉, 熊德成, 黄锦学, 等. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11):1071-1081. |
CHEN Y Y, XIONG D C, HUANG J X, et al. Fine root production of Pinus massoniana plantation and Castanopsis carlesii plantation at different successional stages in subtropical China[J]. Chin J Plant Ecol, 2015, 39(11):1071-1081. | |
[12] | 熊德成, 黄锦学, 陈光水, 等. 中亚热带米槠和杉木细根分泌物研究初报[J]. 亚热带资源与环境学报, 2015, 10(1):83-86. |
XIONG D C, HUANG J X, CHEN G S, et al. A preliminary report on fine root exudates of Castanopsis carlesii and Cunninghamia lanceolata in subtropical zone[J]. J Subtrop Resour Environ, 2015, 10(1):83-86.DOI:10.19687/j.cnki.1673-7105.2015.01.012. | |
[13] | 魏翠翠, 刘小飞, 林成芳, 等. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6):692-702. |
WEI C C, LIU X F, LIN C F, et al. Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China[J]. Chin J Plant Ecol, 2018, 42(6):692-702. | |
[14] | 李晓杰, 刘小飞, 熊德成, 等. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5):447-457. |
LI X J, LIU X F, XIONG D C, et al. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China[J]. Chin J Plant Ecol, 2016, 40(5):447-457.DOI:10.17521/cjpe.2015.0404. | |
[15] | ZHAO H Y, CHEN Y Y, XIONG D C, et al. Fine root phenology differs among subtropical evergreen broadleaved forests with increasing tree diversities[J]. Plant Soil, 2017, 420(1):481-491.DOI:10.1007/s11104-017-3399-2. |
[16] | 周华, 徐国良. 九连山米槠群落结构特征分析[J]. 山东林业科技, 2010, 40(3):22-26. |
ZHOU H, XU G L. Analysis of community structure characteristics of Castanopsis carlesii in Jiulianshan Mountain[J]. Shandong For Sci Technol, 2010, 40(3):22-26.DOI:10.3969/j.issn.1002-2724.2010.03.006. | |
[17] | 周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37(1):127-135. |
ZHOU J C, LIU X F, ZHENG Y, et al. Effects of nitrogen deposition on soil microbial biomass and enzyme activities in Castanopsis carlesii natural forests in subtropical regions[J]. Acta Ecol Sin, 2017, 37(1):127-135.DOI:10.5846/stxb201608181684. | |
[18] | 韩世忠, 高人, 李爱萍, 等. 中亚热带地区米槠天然林土壤微生物群落结构的多样性[J]. 热带亚热带植物学报, 2015, 23(6):653-661. |
HAN S Z, GAO R, LI A P, et al. Soil microbial community structure diversities of Castanopsis carlesii nature forests in the mid-subtropics of China[J]. J Trop Subtrop Bot, 2015, 23(6):653-661.DOI:10.11926/j.issn.1005-3395.2015.06.009. | |
[19] | 纪淑蓉, 郭剑芬, 万菁娟, 等. 水分对米槠天然林土壤有机碳矿化和微生物群落的影响[J]. 亚热带资源与环境学报, 2015, 10(1):34-42. |
JI S R, GUO J F, WAN J J, et al. Effects of changing soil water content on soil organic carbon mineralization and microbial communities in a natural Castanopsis carlesii forest[J]. J Subtrop Resour Environ, 2015, 10(1):34-42.DOI:10.19687/j.cnki.1673-7105.2015.01.005. | |
[20] | FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biol Fertil Soils, 2018, 54(1):149-161.DOI:10.1007/s00374-017-1251-8. |
[21] | FAN Y X, ZHONG X J, LIN F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem:insights from decreased Fe and Al oxides and increased plant roots[J]. Geoderma, 2019, 337:246-255.DOI:10.1016/j.geoderma.2018.09.028. |
[22] | YE X M, BU W S, HU X F, et al. Species divergence in seedling leaf traits and tree growth response to nitrogen and phosphorus additions in an evergreen broadleaved forest of subtropical China[J]. J For Res, 2022:1-14.DOI:10.1007/s11676-021-01437-2. |
[23] | 曾伟, 熊彩云, 肖复明, 等. 中亚热带常绿阔叶林优势树种幼树光合特性季节动态[J]. 南京林业大学学报(自然科学版), 2014, 38(5):157-160. |
ZENG W, XIONG C Y, XIAO F M, et al. Seasonal dynamic study on photosynthetic characteristics of dominant evergreen broadleaved forest[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(5):157-160.DOI:10.3969/j.issn.1000-2006.2014.05.031. | |
[24] | SUN R X, YE X M, WANG Z L, et al. The complete chloroplast genome of Castanopsis carlesii (Hemsl.) Hay[J]. Mitochondrial DNA B Resour, 2019, 4(2):2591-2592.DOI:10.1080/23802359.2019.1641437. |
[25] | BANKS S C, CARY G J, SMITH A L, et al. How does ecological disturbance influence genetic diversity?[J]. Trends Ecol Evol, 2013, 28(11):670-679.DOI:10.1016/j.tree.2013.08.005. |
[26] | PAULS S U, NOWAK C, BÁLINT M, et al. The impact of global climate change on genetic diversity within populations and species[J]. Mol Ecol, 2013, 22(4):925-946.DOI:10.1111/mec.12152. |
[27] | 沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3):5-7,4. |
SHEN H, LIU D Y. Summary of genetic diversity[J]. Joural Biol, 2001, 18(3):5-7,4.DOI:10.3969/j.issn.2095-1736.2001.03.002. | |
[28] | 叶学敏, 陈伏生, 孙荣喜, 等. 基于MaxEnt模型的南酸枣潜在适生区预测[J]. 江西农业大学学报, 2019, 41(3):440-446. |
YE X M, CHEN F S, SUN R X, et al. Prediction of potential suitable distribution areas for Choerospondias axillaris besed on MaxEnt model[J]. Acta Agric Univ Jiangxiensis, 2019, 41(3):440-446.DOI:10.13836/j.jjau.2019052. | |
[29] | 吕锋, 解孝满, 韩彪, 等. 麻栎天然群体种子表型变异分析[J]. 林业科学研究, 2021, 34(2):174-179. |
LYU F, XIE X M, HAN B, et al. Phenotypic variation analysis of Quercus acutissima natural population seeds[J]. For Res, 2021, 34(2):174-179.DOI:10.13275/j.cnki.lykxyj.2021.02.019. | |
[30] | 厉月桥, 李迎超, 吴志庄. 不同种源蒙古栎种子表型性状与淀粉含量的变异分析[J]. 林业科学研究, 2013, 26(4):528-532. |
LI Y Q, LI Y C, WU Z Z. Variation in phenotype characters and starch content of Quercus mongolica fisch seed from different provenances[J]. For Res, 2013, 26(4):528-532.DOI:10.13275/j.cnki.lykxyj.2013.04.022. | |
[31] | 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020, 33(2):93-102. |
XIONG S F, WU L W, CHEN Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances[J]. For Res, 2020, 33(2):93-102.DOI:10.13275/j.cnki.lykxyj.2020.02.012. | |
[32] | 季琳琳, 陈素传, 吴志辉, 等. 山核桃果实主要经济性状和养分含量的差异分析[J]. 南京林业大学学报(自然科学版), 2021, 46(1) : 131-137. |
JI L L, CHEN S C, WU Z H, et al. Variation and cluster analysis on the main economic characters and nutrients of fruit from Carya cathayensis and C. dabieshanensis fine trees[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 46(1) : 131-137.DOI: 10.12302/j.issn.1000-2006.202012044. | |
[33] | 江锡兵, 龚榜初, 刘庆忠, 等. 中国板栗地方品种重要农艺性状的表型多样性[J]. 园艺学报, 2014, 41(4):641-652. |
JIANG X B, GONG B C, LIU Q Z, et al. Phenotypic diversity of important agronomic traits of local cultivars of Chinese chestnut[J]. Acta Hortic Sin, 2014, 41(4):641-652.DOI:10.16420/j.issn.0513-353x.2014.04.008. | |
[34] | 刘娟, 李悦, 于志民, 等. 圆齿野鸦椿种子性状变异及子代苗生长表现[J]. 江西农业大学学报, 2018, 40(4):734-742. |
LIU J, LI Y, YU Z M, et al. Variation of seed characters and seedling growth of Euscaphis konishii[J]. Acta Agric Univ Jiangxiensis, 2018, 40(4):734-742.DOI:10.13836/j.jjau.2018093. | |
[35] | 李洪果, 陈达镇, 许靖诗, 等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4):69-83. |
LI H G, CHEN D Z, XU J S, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii,an endangered plant species[J]. Sci Silvae Sin, 2019, 55(4):69-83.DOI:10.11707/j.1001-7488.20190408. | |
[36] | 李伟, 林富荣, 郑勇奇, 等. 皂荚南方天然群体种实表型多样性[J]. 植物生态学报, 2013, 37(1):61-69. |
LI W, LIN F R, ZHENG Y Q, et al. Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in southern China[J]. Chin J Plant Ecol, 2013, 37(1):61-69.DOI:10.3724/SP.J.1258.2013.00007. |
[1] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[2] | 王晓静, 王涛, 杨凯, 李潞滨. PEG和NaCl胁迫下毛竹萌发种子中环状RNA特征及其表达研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 17-24. |
[3] | 郭聪聪, 沈永宝, 史锋厚. 温度对白皮松种子萌发过程中储藏物质代谢及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 25-34. |
[4] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[5] | 魏亚娟, 郭靖, 党晓宏, 解云虎, 汪季, 李小乐, 吴慧敏. 吉兰泰荒漠绿洲过渡带不同生境下白刺灌丛沙堆形态特征与影响机制[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 172-180. |
[6] | 刘佳磊, 白润娥, 张锴, 文才艺, 闫凤鸣. 我国桂花树上常见粉虱种类记述[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 237-244. |
[7] | 周群. 三角梅新品种‘中闽2号’[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 268-270. |
[8] | 杨素芝, 段磊, 张丽, 冯昭辉, 陆昕, 韩立华, 白玉茹, 乌志颜. 文冠果新品种‘蒙冠1号’和‘蒙冠2号’[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 262-264. |
[9] | 盖军鹏, 陈东升, 贾炜玮, 王政. 基于种源和气候效应的日本落叶松树高生长模型研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 51-60. |
[10] | 邱靖, 李嘉宝, 朱大海, 陈昕. 花楸属直脉组7种/变种基因组大小及叶表皮微形态特征的分类学意义[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 77-86. |
[11] | 黄梓良, 徐子恒, 孙操稳. 青钱柳种子雨的季节动态及土壤种子库特征[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 18-26. |
[12] | 刘相泉, 赵仁菲, 朱艳芳, 邓仕明, 李吉涛, 邓志军. 复羽叶栾树植冠种子库种子活力变化机制[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 35-41. |
[13] | 柳苗, 高捍东, 高燕, 薛晓明. 休眠解除过程中紫楠种子生理生化特征的变化[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 9-17. |
[14] | 王浩宇, 高云鹏, 朱铭玮, 吴洋, 徐林桥, 李淑娴. 内源抑制物对加拿大紫荆种子萌发的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 104-112. |
[15] | 胡兴峰, 吴帆, 孙晓波, 陈厚平, 殷安政, 季孔庶. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||